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ABSTRACT
New battery-free sensor tags that interoperate with unmodified
standard IoT devices can extend a sensor network’s capabilities
in a scalable and cost-effective manner. The tags achieve battery-
free operation through backscatter-related techniques, while the
standard IoT devices can provide the necessary unmodulated car-
rier, avoiding additional dedicated infrastructure. However, this
approach presents multiple challenges: It requires coordination be-
tween nodes transmitting, receiving and generating carrier, adds ex-
tra latency and energy consumption to already constrained devices,
and increases interference and contention in shared spectrum. We
present TagAlong, a medium access mechanism for interoperable
sensor tags that, besides coordinating, optimizes the use of carrier
generators, minimizing the disruption caused to the operation of
the regular nodes. We accomplish this by parallelizing commu-
nications with battery-free tags when possible, sharing carriers
for multiple tags concurrently and synchronizing communications
with tags that share carrier generators. We demonstrate the feasibil-
ity of TagAlong in a testbed deployment. In our evaluation we find
that it can reduce the duration of the tags’ schedule by 60% while
improving the energy and spectrum usage by 30% when compared
to sequential interrogation with no difference in reliability.

CCS CONCEPTS
• Networks → Link-layer protocols; Physical topologies; •
Hardware →Wireless integrated network sensors.
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1 INTRODUCTION
Recent progress in battery-free communications enable new de-
vices that can both transmit and receive standard IoT physical layer
protocols with a power consumption well under 1mW, while as-
sisted by an external unmodulated carrier [10, 26, 39, 40]. These
new devices interoperate with unmodified IoT nodes with stan-
dard hardware and communication protocols. Meanwhile, their
drastically reduced power consumption allows them to leverage a
broad range of energy harvesting techniques [4] to operate indefi-
nitely without batteries. As a consequence, they can be an attractive
complement to regular sensor nodes in novel applications [15, 17]
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(a) Example of network topology and system model showing when node A1 emits and
unmodulated carrier to interrogate tags.
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(b) TagAlong’s optimized schedule. Interrogations are synchronized to maximize
reuse of unmodulated carrier slots (C).

Figure 1: TagAlong ensures the availability of the unmodulated
carrier that sensor tags need to communicate. We optimize tag inter-
rogations sharing unmodulated carriers for multiple tags and inter-
rogating them in parallel. This reduces latency, power consumption
and spectrum usage compared to sequential interrogation.

including localization [23, 29, 33, 35], sensors embedded in the in-
frastructure [15, 44], medical implants or wearable devices [21],
where having batteries in all nodes may be impractical.
Scenario. Sensor tags are battery-free stickers, similar to RFID tags,
containing their own sensors. These devices can extend the sensing
capabilities of existing IoT deployments as easily as when installing
new wireless peripherals to our computers. One would place them
next to the existing IoT nodes which then coordinate to interrogate
the tags for their measurements [39, 40]. This way we avoid the
need for dedicated readers and carrier generators; we reduce down-
time, maintenance and deployment costs associated with deploying
new sensors and batteries; and we avoid costly hardware modifi-
cations to the existing infrastructure. Sensor tags can also enable
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the installation of sensors in hard to reach places, where batteries
or wires may not be viable, while keeping battery-powered nodes
in nearby accessible locations for easy maintenance. For example,
tags could be embedded in the infrastructure, covered in concrete
or implanted in humans or animals, where measurements must be
taken, while keeping battery-powered devices accessible outside to
collect and process sensor readings.
Challenges. Battery-free sensor tags require an external unmodu-
lated carrier to communicate [39, 40]. In scenarios like the above, it
is desirable that the regular IoT nodes provide the carrier to avoid
adding dedicated devices. This approach puts an additional burden
on already constrained sensor nodes, as they invest energy in car-
rier generation and reserve time for tag communications, which
degrades latency network-wide. Therefore, sensor nodes must use
the carrier efficiently to avoid unnecessarily occupying the medium
and draining their batteries. Providing efficient on-demand carrier
support requires careful orchestration: During tag interrogations
we must coordinate a carrier generator, the interrogator and the
tag while avoiding network-wide collisions, as well as unnecessary
access and communication latency. This is challenging in three
specific ways: First, we must compute an efficient schedule that
allows interrogating every tag with minimum resource investment
from the sensor nodes. Second, to ensure that carriers are only used
when there is demand, interrogating nodes must transmit a carrier
activation request. Hence, shared carrier generators must be able
to respond to concurrent carrier activation requests which may
collide and be lost. Third, we must ensure that tags sharing a carrier
generator are interrogated at the same time to avoid unnecessarily
activating the same carrier multiple times to serve different tags.
Contribution.We present TagAlong, a medium access mechanism
for heterogeneous networks of standard nodes interoperating with
battery-free sensor tags, as illustrated in Figure 1(a). TagAlong
automatically coordinates carrier generators, transmitters and re-
ceivers in communications with sensor tags. Beyond coordination,
we optimize both the tag interrogation schedule and the interroga-
tion protocol, as illustrated in Figure 1(b), to reduce latency, power
consumption and spectrum usage.

We make the following key contributions:

• Optimize carrier scheduling to interrogate multiple tags con-
currently, sharing carrier generators whenever possible. This
avoids disruption to regular nodes in terms of communica-
tion latency, power consumption and spectral usage.

• Introduce a carrier request mechanism that enables concur-
rent requests without collisions when multiple nodes share
a carrier generator.

• Propose a mechanism that synchronizes interrogations of
tags that share carrier generators to make sure we do not
activate a carrier unnecessarily, thereby saving energy and
spectrum as shown in Figure 1(b).

• We demonstrate and evaluate our system with an imple-
mentation in an IEEE 802.15.4 testbed, showing no decrease
in reliability with our scheme. A systematic analysis with
testbed topologies evaluates its scalability and system per-
formance at a larger scale.

Approach.We adopt a time-slotted protocol to pre-assign the func-
tion of every device during every time slot and coordinate trans-
mitters, receivers and carrier generators. Communications among
regular nodes are scheduled independently of TagAlong, using ex-
isting slot assignment mechanisms [8, 28]. Additional slots are then
appended to the original schedule to perform tag interrogations
(c.f., Figure 1(b)). The key idea of TagAlong is to reduce the duration
of the tag interrogation schedule by leveraging on regular nodes
that can operate as carrier generators for multiple tags at the same
time, and by parallelizing interrogations when possible. Shortening
the schedule in this way reduces latency, both in communications
among regular nodes and to sensor tags, and reduces the energy
consumption of the system. Sharing a carrier generator for multiple
simultaneous tag interrogations is possible because the communica-
tion range of battery-free tags is short when compared to standard
IoT nodes, which enables spatial reuse (Figure 2).

We approach tag scheduling as a centralized Constraint Opti-
mization Problem (COP). The COP takes the topology of the net-
work as input and computes a schedule that is optimal in that it
requires the least time, and the fewest carrier generators to interro-
gate every tag in the network without collisions, as exemplified in
Figure 1. Tag interrogation slots are used only on request to avoid
unnecessary power consumption and spectrum use. Tags are too
constrained to follow the schedule, instead they are interrogated on
demand. Finally, to maximize carrier sharing, and therefore energy
savings, we synchronize sensor tag interrogations that use the same
carrier generator.
Results.Our testbed experiments show that TagAlong provides the
unmodulated carrier whenever it is needed. The system operates
efficiently in terms of energy and spectrum usage, and without
unnecessary overhead. Our evaluation shows that, for the largest
number of tags evaluated, we can obtain a 60% decrease in the
duration of the tags’ schedule, and a 30% reduction in the number
of necessary carriers relative to sequential interrogation, a common
alternative approach found in the literature [21, 26]. These results
lead to significant improvement in latency and energy savings with
no discernible reliability penalty.
Outline. The rest of the paper is organized as follows: In Section 2
we present the necessary background to understand the rest of
the paper. In Section 3 we discuss the design aspects of TagAlong.
In Section 4 we present our implementation and in Section 5 we
evaluate its performance. Section 6 compares TagAlong to related
approaches. In Section 7 we discuss further improvements to our
system and Section 8 exposes our conclusions.

2 BACKGROUND
Ultra-low power battery-free transceivers such as sensor tags use an
external unmodulated carrier to transmit and to receive. Offloading
the carrier to an external device is the key enabler for ultra-low
power consumption. To transmit, the device employs backscatter
communications and for reception it uses a receiver with an external
Local Oscillator (LO). We now present the operating principles of
each of the two techniques.
Backscatter transmitters.With a power consumption up to three
orders of magnitude lower than traditional radios, backscatter trans-
mitters selectively reflect an external Radio Frequency (RF) signal
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Figure 2: The interference range of a tag (T) depends on the distance
to the carrier generator (C).We leverage this property to limit the
tags’ collision domain to a small region next to the receiver (R)
which increases spatial reuse.

to convey information [26, 32, 47]. The backscatter transmitter
controls the way incident RF is reflected by changing the load at-
tached to its antenna to create a specific impedance mismatch. A
receiver can decode the information by observing the changes in
the reflected signal. Because the amplitude, phase and frequency
of the reflected signal can be controlled this way, it is possible to
backscatter almost any standard physical layer protocol. Multiple
examples with WiFi [26, 47], Bluetooth [9], IEEE 802.15.4 [26, 39]
and LoRa [16, 37, 43] have become available in the open literature
in recent times.
Frequency-shifted backscatter.A crucial aspect when using back-
scatter with commodity devices is that the backscattered signal
can be at a different frequency than the unmodulated carrier. The
backscatter transmitter prevents the carrier from interfering at the
receiver by placing its signal in a different channel [21, 47]. TagA-
long leverages this technique to avoid interference from carrier-
generating nodes. Because of this frequency separation, communi-
cations with tags occupy two channels [21, 39, 40].
Battery-free receiver. An external carrier can help a receiver op-
erate with a power consumption well under 1mW, in a way analo-
gous to backscatter [10, 40]. A receiver of this kind sidesteps power-
hungry blocks present in traditional radio receivers such as LOs and
Analog-to-Digital Converters (ADCs) by replacing them with pas-
sive circuits whenever possible. Similar to backscatter transmitters,
the receiver offloads the LO to an external device that broadcasts
an unmodulated carrier with a frequency that is lower than that
of the received signal. The receiver then employs a passive diode
mixer to downconvert the RF signal to a low Intermediate Fre-
quency (IF), where it can be treated more energy efficiently than
the high-frequency signal.
Communication range and interference.Communication range
in battery-free devices depends on the strength of the external
carrier. This is a behavior observed both in backscatter transmit-
ters [3, 26] and in receivers with an external LO [40]. The closer
the device is to the carrier generator the longer the communica-
tion range and, as a consequence, the larger its collision domain
becomes. Figure 2 illustrates how using a far away carrier leads to
a short communication range for tags. TagAlong exploits this short
range that limits the tags’ collision domain as a form of spatial reuse

to share carrier generators among multiple tags and to interrogate
multiple tags in parallel.

Tags cannot operate properly while provided with multiple un-
modulated carriers as the random phase and frequency offsets
among the carriers would cause problems for both transmission
and reception. We avoid this situation altogether in our system
with the COP.

3 DESIGN OF TAGALONG
TagAlong’s goal is to provide the unmodulated carrier for all tags in
an efficient manner, disrupting the operation of the regular nodes
as little as possible, as illustrated in Figure 1. At a high level, TagA-
long performs the following steps: First, we collect the link-layer
topology of the network of regular nodes in the cloud or edge
server (Section 3.3). Second, we add the tags to the topology. Tag
discovery is outside of the scope of this work. For now we follow
a static mapping of tags to their corresponding regular node host.
We then compute a schedule that is optimal in the sense that it
requires the least time, and the fewest carrier generators to schedule
every tag in the network once per slotframe (Section 3.4). This
involves ensuring that there are no collisions and deciding on a
suitable carrier generator node that each tag will use to receive
interrogations and to transmit the reply. To minimize the length of
the tags’ schedule, energy consumption and spectrum usage, we
choose a carrier that is suitable for multiple tags whenever possi-
ble, and interrogate as many tags as possible in parallel. Examples
of topology and resulting schedules are shown in Figure 4. Third,
we disseminate the schedule to all nodes in the network. During
runtime, we can continue to update the topology information and
recompute the schedule to account for link variability.

During operation, interrogating hosts must request the desig-
nated carrier generating node to transmit an unmodulated carrier,
but concurrent requests to a shared carrier generator would col-
lide and be lost. To solve this issue, hosts signal their need for the
unmodulated carrier transmitting a short carrier themselves (Sec-
tion 3.5). The carrier generating node can detect this signalling
using its Clear Channel Assessment (CCA) mechanism. To take
maximum advantage of carrier reuse, TagAlong synchronizes tag
interrogations so that the ones with shared carrier generators hap-
pen at the same time (Section 3.6). Optimizing the schedule can be
computationally intensive. We introduce a heuristic that reduces
computation time by reducing the size of the scheduling problem
to solve (Section 3.7).

We now discuss each of these aspects in more detail.

3.1 System Model
TagAlong operates in a heterogeneous network, like the one in Fig-
ure 1(a), comprising Na regular nodes and Nt tags. Regular nodes
are standard IoT devices with radio transceivers that support com-
modity physical layer protocols such as Bluetooth or IEEE 802.15.4
and have a means to generate an unmodulated carrier at a chosen
frequency, for instance using their radio test mode [39] or other
means [21]. The network of regular nodes runs on a TDMAMedium
Access Control (MAC) protocol. We adopt a centralized approach
assuming that at least one of the regular nodes in the network has
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a connection to an Edge/Cloud server where we compute the opti-
mal schedule for tag interrogations. This is because computing the
schedule requires considerable computational resources. Regular
nodes perform their own sensing and can provide services like
routing, computation, and edge/cloud access.

Sensor tags are extremely constrained devices with a power con-
sumption well under 1mW that may operate on energy harvested
from their environment. Harvesting modalities may include –but
are not limited to– RF. Sensor tags are equipped with ultra-low
power transceivers that are compatible with the same physical
layer protocol used by the regular nodes, but need an external un-
modulated carrier to transmit and receive, as described in Section 2.
Tags employ frequency-shifted backscatter in their transmissions
so carriers do not interfere with the backscattered signal at the
receiver. Every sensor tag is placed next to a regular node within a
radius of 15 cm to 25 cm approximately. The corresponding regular
node for a tag is said to be its host and a regular node may host
multiple sensor tags. The proximity of the tag to the host allows
the carrier generating node to be located several meters away due
to the communication range behavior discussed in Section 2.

The tags’ low power nature allows them to operate in receive
mode almost continuously from their harvested energy source,
with a virtually-infinite lifetime [22]. As a consequence of their
low power design, they can only perform very simple operations
such as replying to an interrogation after a short time interval,
i.e., similar to an RFID tag or to a computational RFID tag such as
Wisp [1] and Moo [2]. We assume that tags are not able to maintain
synchrony with the network of regular nodes for a long time, as
doing so would require power hungry time-keeping circuitry.

3.2 Overall Design
During the tags’ schedule, all regular nodes remain in an energy-
preserving sleep mode with their radios off, only to become active
when they are needed to generate a carrier or interrogate a tag.
To this end, TagAlong divides time into discrete timeslots that are
grouped into slotframes, which repeat periodically. The regular
nodes’ schedule is independently assigned by any of the existing
mechanisms [8, 28] without knowledge of the tags. TagAlong then
appends dedicated sensor tag interrogation cycles. During these
cycles a host can transmit an interrogation and receive the reply
while a suitable carrier generator is active nearby.

Interrogation cycles must be compatible with regular communi-
cations because the tags’ schedule is appended to the regular one.
We spread tag interrogation cycles across two consecutive times-
lots as illustrated in Figure 3. The tags’ downlink communications
happen in one slot and the uplink in the slot immediately after. This
way it is possible to support full-length frames in both directions
without affecting the time slot duration for the regular nodes.

During operation, carrier timeslots are only needed if the appli-
cation running at the hosts requires them to interrogate a tag. In
sensing and monitoring applications, which are the main focus of
TagAlong, most timeslots would remain unused until a tag must be
interrogated. It would be wasteful to enable carrier generators on
every assigned slot, as most of the times that would be unnecessary.
As a consequence, interrogating hosts must request the activation

Slot n Slot n + 1

A1 RX CG CG
A2 CG TX (req) RX
T1 RX TX (reply)

Figure 3: Spreading interrogation cycles over two timeslots prevents
disruption to the regular schedule. The interrogating regular node
(A2) transmits a short carrier to request the carrier generator (A1)
to engage. With the carrier enabled, A2 sends a request to the tag
(T1). The tag replies during the next time slot.

of the carrier generator to save energy and spectrum.We can config-
ure TagAlong to unconditionally provide the unmodulated carrier
at the appropriate times, thus avoiding the need to transmit and
listen for carrier requests, in cases where we only intend to support
periodic sensing.

Figure 3 shows the procedure that nodes follow to interrogate a
sensor tag. A node that wants to interrogate one of its tags broad-
casts a request at the beginning of the slot allocated to that tag.
Nodes listen to the channel during timeslots when they are sched-
uled as carrier generators. When a request arrives, the carrier gen-
erator (A1) enables the carrier long enough to allow for the trans-
mission of one full-length frame. The interrogating node (A2) then
transmits its request addressed to the desired tag (T1) that will be
able to receive it since an unmodulated carrier is provided. After
a delay, the interrogating node will be listening to receive the re-
sponse from the tag. If the reply does not arrive, because either the
carrier request or one of the messages was lost, or because the tag
did not have enough energy, the interrogating node will have to
try again later.

3.3 Network Topology Discovery
In order to ensure there are no collisions among transmissions
(carriers or data) and that transmissions reach the intended desti-
nations with sufficient signal strength, TagAlong needs to know
the network topology. We represent the network topology as a het-
erogeneous undirected graph G = (V , E) like the one in Figure 1(a).
The vertex set V = A ∪T comprises the set of regular nodes A and
the tags T . The edge set E models radio links among devices. The
weights of the edgesWi , j represent the link quality metric observed
between nodes i and j.

To build the topology graph, TagAlong follows three steps: First,
it discovers the network topology of the regular IoT nodes and
collects it at the server. To this end, we can employ one of many
topology discovery mechanisms available in the literature [5, 24,
36, 42]. Second, TagAlong associates every tag to its host following
the tag to host assignment mapping Ht : t ∈ T 7→ n ∈ A that is
known a priori, either defined statically or from a tag discovery
mechanism that we leave to future work. We add a link between
every battery-free tag and its corresponding host. Third, we add
links between battery-free tags and every one of the neighbors of
its hosts setting the weights of the edges connected to every tag
equal to the weights between the host and each of its neighbors.
More formally:

Wt ∈T ,n∈A =WHt ,n (1)
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This is necessary because battery-free tags generally lack link qual-
ity estimation capabilities. Measurements available in previous
works [39, 40] show that tag communication success correlates to
carrier strength at the host; therefore it is reasonable to use the
signal strength at the host as a proxy for the strength at the tag in
this way.

With the completed topology graph, we can compute the sched-
ule with our COP. During runtime, we can continue to update the
topology information and recompute the schedule to account for
link variability.

3.4 Optimized Carrier Generator Scheduling
The straightforward way of scheduling sensor tag interrogations
without collisions is to sequentially assign a dedicated slot to each
tag in the network. This approach, however, requires unnecessarily
long slotframes as the number of tags grows, leading to excessive
communication latency and reduced network capacity for the whole
network. Instead, we use the network topology to optimize the tag
interrogation schedule.

Intuitively we see that we can leverage their short communica-
tion range to concurrently interrogate tags located far from each
other without collisions, as in Figure 4(c). This saves interrogation
cycles in the schedule, and therefore reduces latency. In fact, we
can exploit the dependency of the tags’ interference range with
carrier strength to interrogate multiple tags using the same carrier
generator, as illustrated in Figure 2(b). As shown in Figures 4(a) and
4(b), this reduces the number of necessary carrier generator slots,
which decreases energy consumption and spectrum usage, besides
also reducing latency.

Next we show how we can leverage these ideas to significantly
reduce interrogation latency, the energy invested in generating
carriers and spectrum usage. The objective in our COP is to find a
slot allocation so that all battery-free tags in the network can be
interrogated once per slotframe with the lowest possible number
of carrier generator slots and in the shortest possible time. The so-
lution to our COP (decision variables) is a schedule Sd ,c ∈ {O, I ,C}
and a destination address matrix Dd ,c ∈ V . The schedule indicates
the function assignment for every device d (tag or regular node)
in the topology graph vertex set V (d ∈ V ) in every interrogation
cycle c ∈ [1,Nt ]. An interrogation cycle consists of an interroga-
tion request, reply pair across two consecutive timeslots as seen
in Figure 3. The possible functions assigned to the devices are: In-
terrogate or be interrogated (I), generate an unmodulated carrier
(C) and remain off (O). Note that the interrogation cycles are in the
closed interval [1,Nt ] because, in the worst case (the sequential
schedule), we need one interrogation cycle per tag.

The destination address matrix indicates the destination address
for interrogation cycles performed by device d during cycle c . In
our COP, we aim to minimize both the duration of the schedule
and the number of carrier generation cycles. We employ linear
scalarization to express both partial objectives as a single one:
Minimize (J1 + (Nt + 1) J2). Partial objective J1 is the minimal num-
ber of cycles needed to complete the schedule, while J2 counts the
cycles dedicated to carrier generation.

We express J1 in Equation 2. J1 equals the cardinality (number
of elements) of the set of cycles in the schedule where at least one

of the devices is not off:

J1 = |{c ∈ [1,Nt ] : ∃d ∈V Sd ,c , O}| (2)

Equation 3 expresses partial objective J2 as the cardinality of the
set of cycles, over all the regular nodes, where the schedule is set
to generate a carrier:

J2 = |{Sd ∈A,c ∈[1,Nt ] : Sd ,c = C}| (3)

Admissible solutions to our COP must concurrently satisfy all
of the following constraints during every tag interrogation cycle:

C1 There must be one and only one neighboring regular node
in carrier generator (C) mode. The link metric from the car-
rier to the tag must overcome a thresholdwmin .

C2 Only the host node can interrogate its associated tags.
C3 A host can only interrogate one of its tags at a time.
C1 represents the basic requirement that tags need only one

sufficiently strong unmodulated carrier to communicate, given that
they would not work well with multiple carriers, as discussed in
Section 2. C2 helps reduce the collision domain of sensor tag com-
munications to a relatively small area around the tag, by ensuring
we use a relatively weak signal from a distant node, never the host,
as unmodulated carrier. This constraint reflects the dependency of
communication range with the strength of the unmodulated carrier
as discussed in Section 2. C3 restricts hosts to interrogate only one
tag per cycle to reflect the fact that radios can only receive from
one device at a time, and that collisions among backscatter tags
occur in the surroundings of the host node and its associated tags.
Because of this, co-hosted tags are always interrogated in sequence
(e.g. Tags T2 and T3 in Figure 4(b)).

To model constraints C1 to C3 we demand that every tag must
satisfy all three predicates P1 to P3 during every cycle when it is
being interrogated. This is expressed as:

∀t ∈T∀c ∈[1,Nt ] : St ,c=I Pi (t, c) : i ∈ {1, 2, 3} (4)

Predicates P1 to P3 model constraints C1-C3 respectively and
are a function of the tag t being interrogated during cycle c .

We model C1 by expressing P1(t, c) in Equation 5. P1(t, c) repre-
sents that there must exist exactly one regular nodeд set to generate
carrier during cycle c and that the signal strength observed by tag t
from that carrier generator according to the weight matrixW must
exceed a thresholdwmin :

P1(t, c) B ∃!д∈ASд,c = C ∧Wд,t > wmin (5)

To model C2 we express predicate P2(t, c) to require that during
cycle c the hostHt of tag t must also be set to interrogate (I) and that
tag t and its host must set each other as their destination addresses:

P2(t, c) B SHt ,c = I ∧ DHt ,c = t ∧ Dt ,c = Ht (6)

Predicate P3(t, c)modelsC3. In Equation 7 we demand that every
tag k other than t that shares the same host as t must be off (O)
during cycle c .

P3(t, c) B ∀k ∈T : k,t∧Hk=Ht Sk ,c = O (7)

We have omitted additional constraints that only ensure proper
modelling and symmetry breaking for efficient computation. These
include constraints to model that tags cannot generate an unmodu-
lated carrier or that regular nodes are off when not interrogating a
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Figure 4: Example topologies and corresponding TagAlong schedules. The examples highlight different aspects of the scheduling process such
as opportunities for carrier sharing and parallel carriers.

tag or generating a carrier. For symmetry breaking, which is impor-
tant to ensure we do not explore redundant solutions, we require
that the n-th tag should be interrogated no later than during the
n-th non-empty cycle, thus excluding equivalent permutations of
the interrogation cycles.

Schedules for a few example topologies are shown in Figure 4.

3.5 Concurrent Carrier Requests
When sharing a carrier generator amongmultiple tags concurrently,
it is possible that carrier requests collide in scenarios as those shown
in Figures 4(a) and 4(b). We want multiple nodes to interrogate their
assigned tags using a common carrier generator to save energy. In
that case, they may all transmit a request for carrier at roughly the
same time. These requests are, however, likely to collide and be lost.
Consider the example in Figures 4(a). Nodes A0 and A2 interrogate
their associated tags at the same time using A1 as unmodulated
carrier. If they both transmit requests at the same time, these are
likely to be lost.

To solve this issue we note that from the carrier generator’s point
of view, it is sufficient to know that at least one of its neighbors
needs the unmodulated carrier in order to enable it. We adopt the
simple strategy depicted in Figure 5 that illustrates how it works for
the situation in Figure 4(a): We replace the carrier request message
by a short period where the requesting nodes (A0 and A2) generate
a carrier of their own. During this time, the carrier generating node
(A1) uses its CCA function to detect activity in the channel. NodeA1
will only enable the carrier if it detects channel activity. During this
brief period, carrier generating nodes increase their CCA threshold
to avoid false positives, increasing robustness. In this scenario, Node
A3 is in range of A2 while A2 requests the carrier. However, since
node A3 is not scheduled as carrier generator, it does not need to
listen to carrier requests.

Using channel activity to signal carrier generators to engage is a
one-bit signal indicating that the carrier should be enabled. This
approach does not allow the request to indicate which node should
engage the unmodulated carrier. This is the reason for constraintC1.
It makes sure that every regular node has only one carrier generator
nearby during its assigned interrogation cycles. Therefore, there is
no possibility of confusion when requesting unmodulated carriers
with our solution. For example, due to constraint C1, nodes such as
A2 in Figure 4(a) can never have two neighbors assigned as carrier
generators during a slot where it is interrogating its tag. In the

A0 CG TX
A1 RX CG
A2 CG TX
A3

Figure 5: TagAlong sidesteps possible collisions of carrier requests
in the optimized schedule using a brief unmodulated carrier and the
CCAmechanism. Regular nodesA0 andA2 can concurrently request
a carrier fromA1 by emitting their carrier thatA1 detects because it
enables the CCAmechanism (gray).A3 is not scheduled to generate
carrier for this slot.

figure, either A1 or A3 could provide the unmodulated carrier, but
not both at the same time. In this case, TagAlong selects node A1
during cycle 1 because it serves to interrogate T1 at the same time.

3.6 Synchronous interrogations
To maximize the energy savings due to carrier reuse, we must en-
sure interrogations to tags that share the same carrier generator
happen in the same slotframe. To that end, TagAlong has a mecha-
nism where it only interrogates tags every n-th globally numbered
slotframe, where n is a function of the slotframe duration and the
desired interrogation frequency. This gives enough time for neigh-
bors who share a carrier to enqueue interrogation requests from
the application and to perform them synchronously.

This mechanism exploits the slotted nature of TagAlong allowing
us to keep track of the absolute time. This can be achieved by
assigning absolute numbers to timeslots and simply keeping track
of the number of elapsed slots.

Most sensing applications where sensor tags are appropriate
can afford significant sensing delay, so by default interrogations
are performed synchronously. The application layer still has the
option to request on-demand interrogations that are performed
as soon as possible (during the next slot for the requested tag). In
the case of periodic sensing applications, or whenever on-demand
interrogations are not needed, TagAlong can avoid listening for
carrier generators in every timeslot except for the ones where
synchronized interrogations can happen. This can lead to significant
energy savings.
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3.7 Increasing the Efficiency of the COP
The COP solver explores a large number of combinations in order to
determine the optimal schedule. As the size of the network increases,
the number of combinations explodes making the problem more
computationally intensive. In an effort to alleviate this situation,
we introduce a heuristic that reduces the size of the problem the
solver needs to tackle without affecting the final solution.

The heuristic builds on the observation that regular nodes that
are neither hosts nor neighbors of any tag, play no role in com-
munications with sensor tags and are always off. To simplify the
COP we remove these nodes from the graph, reducing the size
of the problem. Removing these nodes could, in certain instances,
partition the graph into several connected components, which can
be solved independently; contributing further to reduce the com-
putational complexity of the problem. The complete tag schedule
is built by joining the schedules of all connected components in
parallel given that it is guaranteed that there will be no collisions
across connected components.

4 IMPLEMENTATION
We have created a proof of concept implementation of TagAlong
to show that it is feasible and to use it in our evaluation. The
implementation is based on a network of Zolertia Firefly sensor
nodes with TI CC2538 radios that are compatible with the IEEE
802.15.4 standard. The regular nodes run the Contiki operating
system [6] with its standard IPv6 network stack. As medium access
protocol we employ Time-Slotted Channel Hopping (TSCH) [20],
which is part of the IEEE 802.15.4 standard. We use RPL [46] as
routing protocol.

We created a modified version of TSCH that follows the design
of Section 3 in that it adds support for carrier generator slots but it
is otherwise compatible with the original implementation. During
their carrier generator slots, nodes listen for carrier requests and
only enable the carrier, at the appropriate frequency, if a request is
received. Conversely, interrogating hosts will emit carrier requests
just before interrogating sensor tags according to the design of
Section 3. Time is divided into slots that last 10ms, long enough for
a node to receive a frame and transmit an acknowledgement. Each
node has its own schedule that dictates what to do during every
time slot, whether to receive, transmit, generate a carrier or remain
idle. The schedule also indicates the channel on which to receive or
transmit during any given timeslot. TSCH nodes typically leverage
frequency diversity by hopping over multiple channels.

In our implementation, the regular nodes’ schedule can be de-
fined with any TSCH scheduler [8, 28]. This schedule is used, for
example, to collect topology information and later to disseminate
the schedule for sensor tag interrogations. During our evaluation
we employ a static schedule for simplicity.

Our sensor tag prototypes improve on our previous design of
an IEEE 802.15.4 transceiver that operates assisted by an external
unmodulated carrier [40]. It presents the characteristics described
in Section 2: It requires an unmodulated carrier at 8MHz of the
transmitted or received signal and its range depends on the car-
rier strength. Our prototypes are more sensitive than the original.
With an unmodulated carrier strength of −70 dBm, equivalent to
a line-of-sight distance of 7m to the carrier generator, they have
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Figure 6: RPL constantly tracks link state with a smoothing filter
that allows our schedule to adapt to significant link variations. Link
state evolution of several carrier generation links in our testbed
over 24 hours.

a communication range of 25 cm. We set the minimum accept-
able carrier signal strength in our COP to be equal to this value
(wmin = −70 dBm).

RPL needs reliable and current link-state information to establish
routes. Therefore it constantly tracks every link’s signal strength
with an exponential window moving average filter. We leverage
this link state information to discover the topology of the regular
nodes’ network. Figure 6 shows the evolution over 24 hours of RPL’s
link quality for several of the links used for carrier generation in
our testbed. RPL’s filter allows us to ignore rapid RSSI fluctuations
while adapting the schedule to meaningful trends when needed.

In our implementation, during topology discovery each node
periodically sends its list of neighbors to the cloud server, where
it is compiled to generate a full picture of the network. There are
many topology discovery mechanism available in the literature that
could be adopted [5, 24, 36, 42]. Such a mechanism is beyond the
scope of this work. Once a schedule to interrogate tags is computed,
it is disseminated to all nodes and it is appended to the regular
nodes’ schedule as additional time slots. Link state updates may
still be sent to the server to update the schedule if the need arises.

In place of the cloud server we employ a desktop computer
with an Intel Core i7 CPU at 3.6GHz and 16GB of RAM running
the Ubuntu operating system. To solve the COP we employ the
MiniZinc constraint modelling language [34].

5 EVALUATION
We deploy our implementation from Section 4 in a testbed to show
that all the components work together and to illustrate some of the
attainable savings, as well as to evaluate its reliability. To increase
the scale of our evaluation we then study the savings that we can
achieve with the COP by generating instances with random tag
allocations in topologies gathered from real research testbeds and
on randomly generated ones. We also evaluate the solving time of
our COP and the effectiveness of our heuristic.

We make the following key findings:
• We limit the excess latency for communications among reg-
ular nodes and provide significant energy savings, without
affecting the reliability of tag interrogations.

• Using real-world topologies we show that TagAlong can
achieve a 60% reduction in excess latency and a 30% reduction
in energy consumption compared to the sequential schedule.
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• Our heuristic considerably reduces the worst-time COP solv-
ing time. In 96% of the cases we achieve well under 60 s, even
for the largest topologies evaluated (24 regular nodes and
eight sensor tags).

We deploy our TagAlong implementation from Section 4 in a
local sensor network testbed that consists of 25 regular nodes dis-
tributed across one floor in an office building. We augment the
testbed with six sensor tag prototypes, each located 15 cm from
their host node. One node hosts two tags while four other nodes
host a single tag each. Every host has at least one neighbor within
a distance of 3m to 5m.

5.1 Latency
As slotframes become longer due to the addition of tag interrogation
timeslots, nodes need to wait longer for their assigned chance to use
the medium. In our first experiment, we compare how the latency of
communications is affected by the addition of TagAlong’s schedule
versus the sequential one.
Setup. We configure TagAlong in our testbed to interrogate differ-
ent sets of tags. We transmit 1000 frames from the regular nodes.
We repeat this with TagAlong’s schedule and then with the se-
quential schedule, for each set of tags. Transmissions are requested
at random times with an average period of 1.5 s. We measure the
transmission latency for regular nodes as the time that passes be-
tween the instant when the MAC layer receives the frame from the
upper layer until it is actually transmitted.
Results. Figure 7 compares the transmission latency between a sys-
tem with no tags (only regular schedule) and one with tags, using
either TagAlong’s schedule or the sequential one. Our results show
that the added tag slots increase the latency of communications.
The expected value for the latency of the sequential schedule is
E(∆ttx ) = (Ns×τs )/2 where Ns is the total length of the slotframe,
including the regular schedule (in this experiment Ns = 2Nt + 1),
and τt is the slot duration (10ms). The results of Figure 7(a) are
closely in line with the expected values. TagAlong’s schedule scales
much better than the sequential one due to its ability to paral-
lelize interrogations. The CDF in Figure 7(b) shows that the latency
varies uniformly up to the slotframe duration. This means that most
transmissions are fulfilled during the first available slotframe.

The increase in transmission latency that occurs due to the addi-
tion of tag slotframes as seen in Figure 7 apply both to communi-
cations among regular nodes and tags. In the case of tags, this is
only a concern when not using synchronous interrogations. With
synchronous interrogations we are choosing to delay tag interroga-
tions up to a certain delay in exchange for higher overall energy
efficiency through carrier sharing.

5.2 Energy Consumption
We now illustrate the way that different TagAlong components
contribute to energy savings.
Setup. We perform the same experiment as in Section 5.1 with
1000 interrogation cycles for both types of schedules with different
sets of tags. We do the experiment with, and without synchronous
tag interrogations. We employ Energest [7], the energy estima-
tion mechanism built into the Contiki operating system. In each
experiment we estimate the amount of energy the nodes spend
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Figure 7: TagAlong maintains low communication latency for the
regular nodes as we add more tags. Adding more tags increases
the length of the sequential schedule, leading to increased latency.
TagAlong’s schedule scales much better as tags are added.
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Figure 8: Most of TagAlong’s energy savings due to carrier reuse are
only effective with synchronous interrogation.With asynchronous
interrogation TagAlong performs no worse than the sequential
schedule in terms of carrier energy consumption.

in transmission, reception or generating carriers during the tag
interrogation schedule. Note that the amount of savings depends
on the specific topology and tag placement because carrier sharing
and parallelization opportunities depend on them.
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Figure 9: There is no significant reliability penalty for using TagA-
long. Even though the reliability of tags is different, there is no sig-
nificant difference between the sequential schedule and TagAlong’s.
Mean interrogation success ratio over 10 runs of 100 interrogations
each, error bars show the standard deviation.

Results. Figure 8 shows a comparison of the average energy in-
vested by the regular nodes per tag and per interrogation cycle for
each of the radio functions. The results of Figure 8(a) show that
for reception, TagAlong invests significantly less energy than se-
quential interrogation. This is a result of carrier generator sharing,
as a lower number of carrier generators have to listen for carrier
requests as carrier sharing increases. A large part of the total en-
ergy is employed in reception due to the large number of unused
slotframes where carrier generators nevertheless have to listen for
carrier requests. This overhead can be eliminated almost entirely if
we do not need support for on-demand interrogation requests as
described in Section 3.6 because in that case, carrier generators only
need to listen for requests during active synchronous slotframes.

Figure 8(b) shows that TagAlong invests roughly the same amount
of energy for transmissions as the sequential schedule. These val-
ues do not change with synchronous interrogations. The energy
invested in transmissions is small due to the short length of inter-
rogation frames.

The results in Figures 8(c) shows that in the case of carrier genera-
tion without synchronous mode TagAlong invests the same amount
of energy as the sequential schedule. This is because there is prac-
tically no carrier sharing. Figure 8(d) shows that when we enable
synchronous interrogations TagAlong provides significant energy
savings by sharing unmodulated carriers. As a comparison, regular
nodes spend roughly 147 µJ to transmit a full-length IEEE 802.15.4
frame. In Figures 8(c) and 8(d) we can see that the sequential sched-
ule and TagAlong in the asynchronous mode invests roughly twice
the full-frame transmission energy to interrogate a tag, which corre-
sponds to the two carrier generation intervals. TagAlong’s schedule
requires less energy than the sequential generating carriers.

5.3 Reliability of Tag Interrogations
With the sequential schedule there is no need for compromise in
the strength of the unmodulated carrier as we can always select the
best neighbor as carrier generator. To show that the reliability of
interrogations does not degrade with TagAlong, we compare its in-
terrogation success ratio against sequential interrogation. Figure 9

Table 1: Evaluation Topology Details. Number of nodes (Na ), aver-
age node degree and mean values of carrier and duration ratios for
the topologies used in the evaluation. The lower part of the table
shows values for the random topologies. For these the average node
degree is averaged again over all topologies of the same size and
shown with standard deviations.

Average Mean ηc Mean ηd
Topology Na Node Degree Nt = 8 Nt = 10 Nt = 8 Nt = 10

Local 25 9.6 0.65 0.61 0.37 0.35
FlockLab 27 8.4 0.63 0.60 0.31 0.28
D-Cube 39 10.8 0.52 0.49 0.26 0.24

Na = 6 6 3.5 ± 0.7 0.41 0.42 0.39 0.39
Na = 12 12 4.7 ± 1.0 0.44 0.39 0.31 0.27
Na = 24 24 5.5 ± 0.8 0.50 0.44 0.25 0.21
Na = 48 48 6.1 ± 0.6 0.54 0.51 0.18 0.17

compares the mean success ratio over 10 runs of 100 interroga-
tions for each case. Error bars represent the standard deviation. The
figure shows next to no difference in the reliability of TagAlong
compared to the sequential schedule. We assume that the low relia-
bility obtained for some tags, which does not depend on whether
we use TagAlong or not, is caused by external interference, as the
testbed is located in a busy office building.

5.4 COP Evaluation with Testbed Topologies
Through our implementation we have shown that our system can
provide significant savings in terms of excess latency and energy
invested by the regular nodes in generating carriers. However, the
efficiency gains obtained with TagAlong depend to a large extent on
the specific topology and tag deployment. In the next experiments,
we examine the dependency of TagAlong’s savings with the size
and topology of the network.

In order to perform a larger scale evaluation of our COP, we
conduct a set of offline experiments. We use our topology discov-
ery mechanism to collect the topologies of the network of regular
nodes from our testbed and from two other open research testbeds:
FlockLab [31], and D-Cube [41]. Table 1 shows the number of nodes
in each testbed and the average node degree as a measure of the
density of these networks.

Our evaluation includes a maximum of 10 tags due to the lim-
ited scalability of the COP. The number of regular nodes is much
larger to ensure a negligible probability of generating redundant or
equivalent random instances in the evaluation.

We employ these three topologies as the basis for our experi-
ments, where we create random tag deployments and evaluate two
metrics: carrier ratio and duration ratio.

Carrier ratio (ηc = nc/Nt ) is the fraction of carrier generation
cycles in TagAlong’s solution (nc ) relative to the number of cycles
needed to sequentially interrogating all tags (Nt cycles). Lower
values of ηc represent higher carrier reuse and hence more energy
and spectrum savings. The carrier ratio is 1 if the number of carrier
cycles in the optimized schedule is equal to the one in the sequential
schedule (i.e., no optimization is possible). In Figure 4(c), ηc = 1/2
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Figure 10: Our COP significantly improves the efficiency of tag inter-
rogation schedules. Improvements tend to increase as the number of
regular nodes and tags increases. Mean values over 100 realizations
for every testbed and Nt combination.
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Figure 11: Reduction of at least 60% and 30% in duration and carrier
ratios in most cases, for the larger Nt ’s evaluated. CDFs for three
testbed topologies with varying number of nodes (Na ) and Nt = 10.

since TagAlong’s schedule needs two cycles to interrogate four
tags, which would take four cycles to interrogate sequentially.

Duration ratio (ηd = dc/Nt ) is the fraction of the total number
of cycles needed to interrogate all tags (dc ) relative to the number
needed for sequential interrogation (Nt cycles). Smaller values ofηd
mean lower latency. A duration ratio of 1 means no improvement
over sequential interrogation. In Figure 4(c), ηd = 1/4 because
TagAlong needs only one timeslot to interrogate four tags.
Setup. For each topology we generate one hundred random tag-to-
host assignments of a varying number of tags (Nt ) and solve the
corresponding COP. For each instance, we compute ηd and ηc .
Results. Figure 10 shows the average behavior of both ηd and ηc as
the number of tags increases, for each of the three topologies. The
error bars represent the standard deviation. The figures show that
the duration ratio improves the most, which translates into an im-
portant reduction in latency compared to sequential interrogation.
Both of the metrics improve while the number of tags increases as
the number of opportunities for parallel interrogations and carrier
sharing increase. The carrier ratio figures for D-Cube are slightly
better. We attribute this to the high density of this network allowing
more carrier reuse. The values obtained for carrier and duration
ratios for Nt = 8 and Nt =10 tags, are mentioned in the upper part
of the Table 1.

The results of Figure 11 show that in 80% of the cases, with our
COP we can decrease the excess latency by more than 60% and the
number of carrier slots by 30% relative to sequential interrogation
for the larger Nt values tested.
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Figure 12: The trends observed on the testbed topologies extends
to larger random ones. The amount of carrier reuse decreases as
the density of the network decreases increasing the value of ηc .
Examples for one hundred runs of random geometric graphs.

5.5 COP Evaluation with Large Scale Random
Topologies

The experiments of Section 5.4 show promising results in reducing
the duration of the tags’ schedule and the number of carrier genera-
tion slots. However they are limited in that they evaluate only three
specific network topologies. To evaluate TagAlong with a wider set
of cases we perform more offline experiments as in Section 5.4 but
with entirely random topologies.
Setup. We generate one hundred random network topologies with
varying numbers of regular nodes (Na ). For each of them, we then
generate a random tag-to-host assignment with Nt tags. To gen-
erate the network of regular nodes, we employ random geometric
graphs [38] as a stand-in for a realistic network topology [27]. The
lower section of Table 1 summarizes the average characteristics of
these topologies, that are average node degree and mean values of
carrier and duration ratios for Nt = 8 and Nt =10 tags. To provide
the weight of the edges, which represents the signal strength ob-
servable through every link, we use the Friis Equation [3]. As in
Section 5.4, we compute ηd and ηc for each instance.
Results. Figure 12 shows the behavior of ηd and ηc as we vary the
number of regular nodes between six and 48 for different numbers
of tags. The results show that we retain the general trend observed
with the testbed topologies in Section 5.4. There appears to be only
a slight tendency for ηd to decrease with the size of the network
(Na ). However, ηc appears to increase slightly for larger networks.
We believe that this happens because, as the network size increases,
it becomes less likely that a node will have multiple neighboring
tags to concurrently serve as carrier generator. This reduces the
likelihood of carrier sharing, which increases the number of neces-
sary carrier generation slots and consequently, the value of ηc . On
the other hand, a lower tag density makes it increasingly easy to
find ways to interrogate tags concurrently using different carrier
generators, which explains the downward trend of ηd .

5.6 COP Solving Time
In some instances the COP can take a long time to solve. With the
next experiment we want to show that in most cases we obtain a
solution in reasonable time. We also investigate the effect of the
heuristic introduced in Section 3.7.
Setup. We compare the computation time needed to optimize the
100 instances used in Section 5.5 with (Optimized) and without
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Figure 13: In most cases our COP solves in under 60 s. Examples
for 24 regular nodes. As seen in Figure 13(a) 96% of the cases are
computed in 60 s or less. Our optimization heuristic reduces the
worst computation time significantly in many cases.

(Regular) applying the heuristic of Section 3.7 that removes nodes
that are not neighbors of any tag.
Result. Figure 13 shows the results. Figure 13(a) depicts that 96%
of the cases are computed in 60 s or less in the case of eight tags
in networks of 24 regular nodes. The computation time appears
to asymptotically scale exponentially with the number of tags,
as indicated by the linearly-growing curve in the semi-log plot
of Figure 13(b). The optimization reduces the worst computation
time by nearly an order of magnitude in some cases. It is to be
expected, however, that the heuristic of Section 3.7 does not provide
a significant improvement in networks with a large density of tags.
This is because the regular nodes are more likely to be connected
to a tag as we install more in the network, rendering the heuristic
ineffective as we can no longer remove many regular nodes.

6 RELATEDWORK
Optimizing TDMA schedules has been an active area of research
in conventional wireless sensor networks. Ergen et al. [11] and
Gandham et al. [13] have used optimization to determine the small-
est conflict-free slot assignment. Zhang et al. have addressed the
problem of joint link scheduling and channel assignment for Wire-
lessHART [48]. Similar to these studies, we also use optimization.
Our approach, however, differs in that sensor tags require an ex-
ternal carrier to operate and they can have very reduced commu-
nication range compared to a normal sensor node. This leads to
fundamentally different rules for what is considered a valid configu-
ration and therefore results in different optimization problems than
those involving only regular radio links. Specifically, this allows
optimizing carrier allocation by reusing a single carrier for multiple
concurrent interrogations.

Our work is related to battery-free communications that employ
backscatter and other related techniques to achieve ultra-low power
consumption, in particular to those who integrate battery-free com-
munications with commodity networks. Most of the work in this
area focuses on the physical layer but the efficient provision of the
excitation signal is rarely addressed. By contrast, in our work, we
focus on providing the excitation signal in the most efficient way to
cause as little disruption as possible to the operation of the regular
network nodes and other nearby devices.

We previously introduced the idea of augmenting an IoT net-
work with sensor tags and having the regular nodes provide the
unmodulated carrier [39]. That work, however, did not address

carrier scheduling mechanisms. In subsequent work [40], we intro-
duced two-way ultra-low power communication and scheduled the
carrier statically in a TDMA protocol, very similar to our current
implementation. However, we demonstrated the concept with a
single prototype, without optimizing carrier generators in any way.
This paper builds on our previous work, but our goal now is to
provide the unmodulated carrier in the most efficient way and to
cause little disruption to regular nodes in a networks with multiple
deployed sensor tags. We also demonstrate the system in a small
scale testbed.

Netscatter [16] integrates battery-free devices into commodity
networks and leverages specific properties of LoRa’s physical layer
to decode multiple concurrent transmissions at a specialized base
station. TagAlong differs in that it does not assume a specific phys-
ical layer, and in that it extends a mesh network of unmodified
standard IoT devices with battery-free tags. Several other works in-
tegrate battery-free devices in standard networks [9, 21, 26, 43, 44].
These works make varying efforts to make efficient use of the un-
modulated carrier. In some cases the carrier is always on, while in
others its duration is tailored to the known duration of backscat-
ter transmissions. In none of these cases, however, the authors
share carriers between devices or limit the disruption of standard
networks like TagAlong does.

A different approach is taken by works that employ modulated
traffic as the excitation signal [25, 37, 47, 49]. While these ap-
proaches leverage an information-carrying signal as excitation,
they have less control over it. As a result these works either make
no attempt to optimize the carrier or sometimes try to make the
regular network perform spurious transmissions.

Braidio [18] takes a radical new approach by dynamically switch-
ing the task of carrier generation between the transmitter and the
receiver. Braidio focuses on maximizing the system lifetime but
does not attempt to optimize carrier usage other than within a
single radio link.

Gummeson et al. [14] address the link layer for RFID-like devices.
Their focus is on increasing the data rate of bulk transmissionswhile
remaining compatible with EPC Gen 2 RFID readers. Instead, we
focus on efficient use of the unmodulated carrier.

Van Huynh et al. [19] employ numerical analysis to optimize the
overall network throughput in a network of RFID devices powered
through RF. While they focus on optimizing the energy harvesting
of their tags, we do not assume, or rule out, any harvesting modality.
Decoupling energy harvesting from communications allows us to
directly interoperate with the standard networks while remaining
independent of the harvesting modality. Li et al. [30] propose a
polling protocol for the same kind of system. They focus on polling
as many tags as possible with conventional RFID readers, therefore
they are not concerned with saving energy.

7 DISCUSSION
Dynamic environment.Wireless links can vary broadly in time.
Our system constantly monitors link quality so it can react to these
variations. It can, for instance, update the schedule if existing nodes
die or new ones are added. Furthermore, the system can update
the schedule in reaction to significant link quality changes while
ignoring spurious fluctuations by filtering, as discussed in Section 4.
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In our implementation these updates would be necessary roughly
as often as RPL updates a preferred parent, which is known to occur
seldom in dense networks [12].
High Network Density. Current sensor tag technology has lim-
ited communication range, therefore it requires fairly dense net-
works of regular nodes to operate (5m to 7m inter-node distance).
However, tag technology is advancing rapidly and recent works
have shown a lot of promise in increasing the communication range
for these devices [44, 45]. These advances can help reduce TagA-
long’s limitations in both network density and tag range.
Centralized Approach. TagAlong adopts a centralized approach
which limits scalability due to the high computational cost of the
schedule computation, alongwith the need to collect the topology at
a single point and the requirement for cloud access. TagAlongwould
benefit greatly from a distributed scheduling algorithm because
that would solve most of these issues. Note that the remaining
components of TagAlong would still work the same way. We leave
the design of a more capable scheduler for future work.

8 CONCLUSIONS
We introduced TagAlong that, to the best of our knowledge, is
the first system to efficiently coordinate carrier generation in an
IoT network augmented with interoperable battery-free tags. Our
testbed-based evaluation shows that TagAlong minimizes the dis-
ruption to the operation of regular nodes in terms of added latency
and power consumption. TagAlong also avoids unnecessarily pol-
luting the RF spectrum with unmodulated carriers. Finally, TagA-
long achieves all this with no discernible decrease in reliability in
communications to sensor tags when compared to the alternative
approach of interrogating each tag in sequence.
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