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Activity rhythms in animal groups arise both from external changes in the environment, as well as from

internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperi-

odic and even chaotic behavior resulting from ‘‘autocatalytic’’ mechanisms. We use nonlinear differential

equations to model how the coupling between the self-excitatory interactions of individuals and external

forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and

displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity

cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between

external forcing and activity. We find similar activity patterns in ant colonies in response to varying

temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of

transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities

seen in the activity of animal and human groups might be accounted for by the coupling between

collectively generated internal clocks and external forcings.
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Activity rhythms occur both within individual animals
and in social groups, with examples ranging from humans
through insects down to micro-organisms [1–4]. This
emergence of collective activity is in many respects remi-
niscent of chemical and physical processes involving many
degrees of freedom [5,6]. In group-living animals, self-
sustained activity oscillations can be a consequence of
either exogenous or endogenous dynamics, or a combina-
tion of these. One important exogenous factor is the day-
night cycle and associated changes in temperature [7,8].
Animals living in groups also have endogenous activity
cycles [9]. For example, in ants isolated individuals exhibit
an apparently random pattern in their activity, while colo-
nies show periodic activity bouts [10]. These observations
suggest that ant activity is autocatalytic in the sense that the
activation of an individual increases with the number of
already active ants, giving rise to a positive feedback [2].

When considering the interaction between exogenous
and endogenous factors in social activity, a major chal-
lenge is in quantifying dynamics in natural conditions. Ant
foraging, one of the paradigmatic subjects in the field of
social animals, has been examined quantitatively in con-
trolled laboratory experiments [11,12] and for short tem-
poral windows in the field [13,14]. Here we are able to
quantify the activity of foraging ants in a natural environ-
ment over several days with a resolution of a few seconds
using ad hoc infrared sensors placed at the entrance to the
nests [15].

We first develop a mathematical model of activity cycles
for social groups, incorporating both endogenous interac-
tions and exogenous forcing.We consider a situation where
there is a flow � of individuals, e.g., ants leaving the nest.

These individuals enter an active state, denoted A, with a
probability fðA; IÞ that increases with the number of active
individuals and decreases with the number of retired, inac-
tive ones, the latter denoted I. The transition from active to
inactive occurs at a constant rate. In the absence of external
forcing the time evolution of active and inactive individu-
als is then

dA

dt
¼ �fðA; IÞ � kA

dI

dt
¼ kA� k0I; (1)

where k is the transition rate of individuals from the active
to the inactive state, and k0 is the rate at which inactive
individuals cease participating in the process due to the
presence of constraints such as crowding effects. The
function fðA; IÞ that determines the probability of becom-
ing active is modeled as a Hill-like function

fðA; IÞ ¼ K2 þ A2

2K2 þ A2 þ I2
; (2)

where K is a threshold. When I is small almost all indi-
viduals become active, but as I increases the retired ants
serve to inhibit further recruitment. This type of model is
generic and applicable to a wide range of situations beyond
ant’s foraging, from social (e.g., gaze following in humans
[16]) to intracellular (e.g., calcium oscillations [1])
dynamics.
The steady state solutions of Eqs. (1) and (2) and their

stability can be solved analytically (see 1 in Supplemental
Material [17]). The analysis reveals that the system under-
goes oneHopf bifurcation at a particular value of k [Fig. 1(a)],
where the variables start to oscillate at a frequency equal to
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� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk0 þ ½2�K2Asððk2=k0Þ � k0Þ=ð2K2 þ A2

s þ I2s Þ2�
p

.
Figures 1(b) and 1(c) show how the number of active
individuals changes through time before and after the bifur-
cation. A closer study reveals that for k values substantially
larger than kc, a reverse Hopf bifurcation takes place,
beyond which oscillatory behavior disappears and the
steady state is again stabilized [Fig. 1(d)]. In what follows
we will focus on k values above and relatively close to the
first bifurcation point kc. Around this point there is temporal
asymmetry in group activity, with a rapid increase in activ-
ity at the start of a cycle, followed by a slower return to
inactivity [Fig. 1(c)].

To incorporate exogenous forcing we add a time depen-
dent component to the flow term. Equations (1) become

dA

dt
¼�½1þTðtÞ�fðA;IÞ�kA;

dI

dt
¼kA�k0I; (3)

where TðtÞ accounts for changes in the environment over
time. In much of what follows, we use a simple sinusoidal
function of amplitude � and frequency !, TðtÞ ¼ � sin!t.
Equations (3) define a periodically driven nonlinear oscil-
lator [18]. The coupling between endogenous interactions
and exogenous forcing produces a rich variety of dynam-
ics. Figure 2 provides examples of different activity cycles
as � is increased, keeping the frequency ! constant. The
dots and squares are located at the numerically observed
mean periods, whereas the vertical bars represent the
standard deviations around the means. In the upper branch,
the mean frequency is equal to the intrinsic oscillation
frequency, �, whereas in the lower branch it is equal to
the forcing frequency, !. Four different regions can be
identified:Region 1: Provided � < 0:3 the mean frequency
is equal to�. However, as soon as � is not strictly zero the
oscillations exhibit increasing deviations from this intrinsic
period. Region 2: For �� 0:3 the deviations become espe-
cially pronounced. The mean period changes then sud-
denly to that of the forcing, but first the oscillations do
not follow this periodicity exactly. Region 3: At �1 � 0:43
till about �2 � 0:52 full entrainment at the forcing period is
observed. Region 4: Finally, beyond �2, the oscillations
cease again following the forcing period.
Figure 3 depicts the time dependence of A, the phase

space plot, and the Poincaré surface of section (recorded at
time intervals separated by the mean period) for regions 1
to 4 [19,20]. We conclude that in region 1 the behavior is
quasiperiodic, [Fig. 3(a)], while in region 2 it is chaotic
[Fig. 3(b)]. In these two regions the group’s intrinsic
activity cycle enhances its flexibility in responding to
external forcing. The group adapts quickly to changes in
the dynamical environment, with a rapid coordinated

FIG. 2. Mean period of oscillations of A as a function of the
amplitude of the forcing TðtÞ. The vertical bars correspond to the
standard deviation. Other parameter values are k ¼ 0:007, k0 ¼
0:003, K ¼ 1, � ¼ 1, and ! ¼ 0:005.
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(b)

(c)

(d)

FIG. 1. Bifurcation diagram of the steady states of A against
the parameter k (a). Time behavior of active individuals before
the first bifurcation point kc (k ¼ 0:0045) (b), after the first
bifurcation point (k ¼ 0:007) (c), and after the second bifurca-
tion point (k ¼ 0:025) (d). Other parameter values are � ¼ 1,
k0 ¼ 0:003, and K ¼ 1.
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FIG. 3. Activity versus time, phase space plots and Poincaré
surface section recorded at time intervals separated by the mean
period for four different �. (a) A quasiperiodic behavior (� ¼
0:26), (b) a chaotic behavior (� ¼ 0:36), (c) a periodic behavior
with period equal to the forcing (� ¼ 0:46), and (d) a periodic
behavior with a period twice the forcing (� ¼ 0:76). Other
parameter values as in Fig. 1(c) and ! ¼ 0:005.
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increase in activity followed by a slower decrease. In
region 3 the oscillations are strictly periodic [Fig. 3(c)]
and the group activity cycles follow the external forcing.
Region 4 is also periodic but with a period twice that of the
forcing period [Fig. 3(d)]. Here, the group first over- then
under-responds to the exogenous forcing.

Given the above analysis we predict that social groups
that have evolved to deal with changes in the external
environment should exhibit dynamics consistent with
regions 1 or 2, where they respond flexibly. We also predict
that these groups will exhibit rapid activity increases and
slower decreases. We now test these predictions in ants.

We monitored the activity profile of the ant species Atta
Insularis, a leaf-cutter ant endemic of Cuba [21]. A sensor,
consisting of a ring with a reflective inner wall, was
calibrated in order to establish the correspondence between
the number of interruption signals per unit time and the
number of ants crossing the ring either way per unit time
(i.e., the flow of ants getting in or out from the nest). These
measurements were defined as the ants’ activity. Near the
activity sensor we positioned a digital thermometer (also
linked to our electronics) able to collect the environmental
temperature data with a resolution of 0.5 Celsius. One of
the time series is depicted in Fig. 4. Each day, the tem-
perature near the nest’s entrance is seen to increase rela-
tively fast, while the cooling down occurs more slowly.
The activity record shows that each day, the minimum of
activity corresponds approximately to the maximum tem-
perature and vice versa; i.e., the ants avoid foraging in the
hottest hours.

Our measurements support the model prediction of an
asymmetry in the initiation and cessation of activity. The
foraging activity increases each day quickly when it
becomes cool, but decreases more slowly as the tempera-
ture increases again. The asymmetry between temperature
and activity can be quantified in the following way (see
also 2 in the Supplemental Material [17]): if, for a 24 hour

period between two minima of activity we calculate the
difference between the position of the maximum minus
half the length of the time interval (i.e., 12 hours), the
maximum is always shifted to the left. If we average these
shifts for several days and express the result as a percent of
the duration of one day, we get �16� 6% for the data
depicted in Fig. 4. The asymmetry in the daily activity
cannot be trivially linked to the asymmetry in the time
evolution of temperature: if one assumes, for example, that
the number of foraging ants is proportional to 1� TnðtÞ
(where TnðtÞ is the normalized environmental temperature)
within a standard pheromone deposition-evaporation com-
putational model [22], the experimental asymmetry in the
activity record is not reproduced.
Figure 4 shows temperature is not purely sinusoidal. For

a more realistic comparison with the data we therefore fit
the experimental temperature with a sum of sinusoidal
terms which for our purposes can be truncated to TðtÞ ¼P8

i¼1 �i sinð!itþ ’iÞ, where �i, !i, and ’i are the differ-

ent amplitudes, frequencies, and phases of the external
signal. We also extend the model in order to include the
stochasticity inherent in the phenomenon. Figure 5(a) rep-
resents the evolution in time of the fitted forcing and

FIG. 4 (color online). Temperature and activity time series on
one nest for approximately 8 full days. Upper panel:
Temperature time series. Lower panel: Activity time series
(activity is measured as number of measured pulses every
36 seconds).

(a)

(b)

(c) (d)

FIG. 5. Monte Carlo simulation with a deterministic forcing
fitted from the data with a sum of eight sinuses (a), autocorre-
lation of activity’s experimental and simulated data (b), proba-
bility distribution of the frequency of activity signal of the
experimental and simulated data (c), and probability distribution
of the variable A� ðT � �TÞ (d). Parameter values as in Fig. 1(c)
but for a forcing equal to

P8
i¼1 �i sinð!itþ ’iÞ with �i, !i, and

’i fitted to the data in Fig. 4: �1 ¼ 0:1359, !1 ¼ 0:004387,
’1 ¼ 2:197, �2 ¼ 0:01797, !2 ¼ 0:003825, ’2 ¼ �1:974,
�3 ¼ 0:03699, !3 ¼ 0:0005156, ’3 ¼ �1:599, �4 ¼ 0:03763,
!4 ¼ 0:001148, ’4 ¼ �0:2025, �5 ¼ 0:04034, !5 ¼
0:008723, ’5 ¼ �2:639, �6 ¼ 0:6858, !6 ¼ 0:002471,
’6 ¼ 1:167, �7 ¼ 0:6865, !7 ¼ 0:00246, ’7 ¼ �1:925,
�8 ¼ 0:01727, !8 ¼ 0:005573, ’8 ¼ 0:02816.
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resulting activity in a Monte Carlo simulation run for the
same time span as the experiment. This figure resembles
closely the experimental figure (Fig. 4) and displays the
same properties such as a near antiphase shift between the
forcing and activity as well as irregular intensity peaks of
activity. The model also predicts the asymmetry between
the increase and the decrease of activity within each day
giving a peak asymmetry of �19� 7%, near the experi-
mental value. As for the autocorrelation function, we can
see in Fig. 5(b) that it becomes flat about the same time for
the data and the simulation. The probability distributions of
the frequencies [Fig. 5(c)] and of the variable AðT � �TÞ
tend also to be very similar, giving an antiphase relation for
negative values and an in-phase one for positive values
[Fig. 5(d)]. It is interesting to notice that the mean

amplitude (1=8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

8
i¼1 �

2
i

q
) of temperature variability is

0.123, a value that corresponds in Fig. 3 to a point near
the chaotic regime, which produces flexible responses to
perturbations.

The experiments support the model predictions of a
social ‘‘waking up’’ and ‘‘winding down’’ dynamics, in
the form of rapid increases followed by slower decreases in
activity. This asymmetric cycle is familiar to many human
societies, with important meetings planned at the start of
the working day and more informal low-level activities
taking place in the evenings. While in humans this pattern
might be attributed to forward planning, for the ants it is
the result of local interactions [23]. This conclusion on
complex decision patterns—and flexibility in particular—
emerging from the underlying evolution laws is in line with
some ideas developed in the recent book by Viswanathan
et al. [24].

Rather than becoming entrained to a regime and
following passively the external signal without any dis-
crimination of environmental perturbations, the group is
instead capable of maintaining a degree of flexibility and
produce its own characteristic response. As a result,
activity cycles can occasionally jump out of synchroni-
zation, resulting in surprisingly high or low levels of
activity. The parameters compatible with our experiment
suggest that the system operates in a regime of quasiper-
iodicity close to a cascade of transitions leading to chaos
[1,25]. Anecdotal evidence supports the existence of
such fluctuations in human activities [26]. An interesting
model prediction that we have not observed experimen-
tally here, relates to region 4 in our model. In this region
activity levels systematically under- and overshoot the
stimulus, resulting in somewhat dysfunctional activity
cycles. We expect that all four types of activity rhythm
predicted by our model may be observable in humans
and other animals.
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Batista-Leyva, and C. Noda, Am. Nat. 166, 643 (2005).
[22] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G.

Balan, Simul-trans Soc. M S 81, 517 (2005).
[23] S. Camazine, N. R. Franks, J. Sneyd, E. Bonabeau, J.-L.

Deneubourg, and G. Theraulaz, Self-Organization in

Biological Systems (Princeton University Press,

Princeton, NJ, 2001).
[24] G.M. Viswanathan, M.G. da Luz, E. P. Raposo, and H. E.

Stanley, The Physics of Foraging: An Introduction to

Random Searches and Biological Encounters

(Cambridge University Press, Cambridge, England, 2011).
[25] M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978).
[26] D. Helbing, Quantitative Sociodynamics: Stochastic

Methods and Models of Social Interaction Processes

(Springer, New York, 2010).

PRL 110, 268104 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
28 JUNE 2013

268104-4

http://dx.doi.org/10.1007/BF02224063
http://dx.doi.org/10.1007/BF01054607
http://dx.doi.org/10.1126/science.171.3967.213
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1093/beheco/11.4.396
http://dx.doi.org/10.1093/beheco/11.4.396
http://dx.doi.org/10.1098/rspb.2000.1271
http://dx.doi.org/10.1098/rspb.2000.1271
http://dx.doi.org/10.1098/rspb.1991.0079
http://dx.doi.org/10.1007/s00265-006-0233-x
http://dx.doi.org/10.1016/j.jtbi.2005.12.003
http://dx.doi.org/10.1016/j.jtbi.2005.12.003
http://dx.doi.org/10.1007/s000400300001
http://dx.doi.org/10.1103/PhysRevLett.102.108001
http://dx.doi.org/10.1063/1.2400215
http://dx.doi.org/10.1073/pnas.1116141109
http://dx.doi.org/10.1073/pnas.1116141109
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.268104
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.268104
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1119/1.1467909
http://dx.doi.org/10.1086/498139
http://dx.doi.org/10.1177/0037549705058073
http://dx.doi.org/10.1007/BF01020332

