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Abstract. The percolative character of the current paths and the self-field effects
were considered to estimate optimal sample dimensions for the transport current of
a granular superconductor by means of a Monte Carlo algorithm and critical-state
model calculations. We showed that, under certain conditions, self-field effects are
negligible and the Jc dependence on sample dimensions is determined by the
percolative character of the current. Optimal dimensions are demonstrated to be a
function of the fraction of superconducting phase in the sample.

1. Introduction

Since the discovery of high-temperature superconductors
(HTCs) by Bednorz and M̈uller [1] the transport critical
current densityJc (i.e. the maximum current density a
superconductor can carry without dissipation) has been one
of the most studied parameters of these materials, especially
because of its importance when considering commercial
applications. In fact, it is believed that the lowJc of
HTC materials is the basic problem to be solved in order
to achieve industrial applications [2, 3].

Depending on the sample type, different limiting factors
for Jc have been established. For example, it is well known
[4–6] that ceramic superconductors consist of a collection
of randomly oriented grains connected by weak links which
are responsible for the low value ofJc in these materials.
A different situation seems to arise in epitaxial thin films
where ‘micro’ weak links appear within the grains as a
result of other microstructural defects and limitJc [7].
In other types of samples such as Bi–Sr–Ca–Cu–O tapes,
different models have been proposed for the description
of the field and temperature behaviour ofJc which take
into account the relation between microstructure and the
percolative path of the current [8–10].

The influence of sample geometry onJc has also been
studied, particularly in connection with self-field effects
[11, 12]: sinceJc strongly depends on the field, the self-
field depresses it when the sample size increases.

In this work two effects were considered to estimate
the dependence of the critical current density on sample
geometry for a granular superconductor: the self-field
effects mentioned above and the increase ofJc connected

with the fact that, when the sample cross-section increases,
a greater number of percolative paths appear in the
superconductor. The latter effect, which is a consequence
of percolation theory [13, 14] (usually applied to study the
transport properties of ceramic superconductors [15, 16]),
has been never explicitly considered, as far as we know, to
describe theJc dependence on sample size.

2. Theory

2.1. Self-field effects

It is accepted that the critical current density in granular
superconductors strongly depends on the magnetic field
[17]. Thus, their magnetic behaviour in the mixed
state is usually described using the exponential model
[18] or Kim’s model [19] rather than the conventional
Bean critical-state model [20]. In this section we
shall review the general treatment developed in [11] to
derive relationships between the critical current density
and the sample dimensions and discuss some important
consequences useful to understand the results presented in
the next section.

The self-field generated at the edges of an infinite slab
of thicknessa with a transport currentJ flowing along its
major axis can be written as

Hs = J a
2

(1)

and, defining (following [11])Jc as the transport current
density needed for full penetration of the sample by the self-
field, we just have to calculate the field of full penetration
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from the critical-state model assumptions and Ampère’s
law. Mathews and M̈uller [11] found the following
relationships betweenJc and the sample thickness: for the
exponential model

Jc = 2H0

a
ln

(
1+ Jc0a

2H0

)
(2)

and for Kim’s model

Jc = 2H0

a

[(
Jc0a

2H0
+ 1

)1/2

− 1

]
(3)

whereJc0 is the critical density at zero field andH0 is a
parameter which represents the field needed to decreaseJc
by a factor of e in the exponential model or by a factor of
2 in Kim’s model.

It is important to note that both formulae have the same
asymptotic behaviour for small thicknesses (i.e.Jc does
not depend on sample size) while, for large thicknesses,
Jc decreases following potential laws. It should be also
pointed out that, in deriving formulae (2) and (3), the
percolative character of the current path was not considered.
If this character is taken into account, we propose that the
critical current density at zero field can be expressed as

Jc0 = J ′c0f (a, p) (4)

wherep is the fraction of superconducting phase present
in the sample,J ′c0 is the critical current density of an ideal
sample in zero applied field (i.e. a sample with no defects
or percolative current paths) andf (a, p) is a dimensionless
function which evaluates the effects of the percolative paths
on the critical current density. To estimate this function we
performed the simulation described below.

2.2. Simulation

We modelled the sample as a ‘simple cubic’ array of grains,
each one of dimensionsL0 × L0 × a0 with probability p
to be superconducting. This can be understood in three
different ways depending on the feature limitingJc: a
fraction 1−p of the grains have lower critical current than
the fractionp remaining, because of intragranular ‘micro’
weak lines (a situation suitable for thin films), a fraction
1 − p of the grains are connected only by weak links
with all their neighbours (a better description for ceramic
superconductors) or a fraction 1−p of the grains has lower
critical temperature than the others (which is an appropriate
description for both systems).

However, as our array is ideally regular, a quantitative
extrapolation to ceramic samples must be done with
caution, even if we consider that our results will remain
qualitatively the same. A better description for real
ceramics should be obtained by modelling their structure
through the Swiss-cheese model [13, 14].

The percolative paths were found using a standard
algorithm [21] in samples with different dimensionsL ×
L×a. The variation ofa andL allowed us to examine the
range from two-dimensional (2D) samples with only one
row of grains (a = a0, L = L0) to three-dimensional (3D)

Figure 1. Sketch of typical arrays used in the simulation:
(a) L = 5L0, a = a0; (b) L = 5L0, a = 5a0.

samples (a = Na0, L = NL0) whereN is the number
of grains in a given direction (see figure 1).Jc0 was
estimated as in [22] by finding the plane perpendicular to
the flow of current where a minimum number of percolative
paths was found (limiting plane) and defining the critical
current of the sample as proportional to the number of paths
piercing the limiting plane, assuming that each one supports
a current densityJ ′c0 without dissipation. This implicitly
means that all grains or links belonging to the percolative
paths have the same critical current density. A similar
procedure has been followed by Octavioet al [23] although,
in their case, the critical current was estimated through the
minimum neck of the current paths in the Swiss-cheese
model. However, it is worth noticing that our procedure is
valid when the transport of current is isotropic, i.e. if the
current does not have a preferential direction of flow.

Finally, a comment on the sources of errors in
our simulation and how we handled them is necessary.
Although impossible to eliminate, finite-size effect were
delimited by studying samples with different sizes.
Fluctuation effects due to different possible configurations
for each value ofp and because of dead ends were also
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Figure 2. Jc0 versus p dependences for 2D (�, �) and 3D
(◦, •) samples, for N = 20 (�, ◦) and N = 30 (�, •). The
insert shows the difference between the upper and the
lower curves.

diminished by repeating each calculation several times
and averaging. At the end we obtained the following
approximate relative error,er , for different intervals ofp:

0.3≤ p < 0.5 er ≈ 10%

0.5≤ p < 0.7 er ≈ 20%

0.7≤ p < 0.9 er ≈ 15%

0.9≤ p ≤ 1 er ≈ 5%.

3. Results and discussion

Figure 2 shows the dependences ofJc0 on the fraction of
superconducting phase,p, for different sample dimensions.
Note the different behaviours of 2D samples and 3D
samples that, as already mentioned, is a consequence of
the better connectivity in 3D samples because of the greater
number of neighbours each grain has. As expected from
percolation theory,Jc0 is zero forp < 0.3 in the case of
3D samples, and forp < 0.6 in the case of 2D samples.
However, an abrupt change of slope ofJc0 close top = 0.6
was found even in 3D samples, perhaps as a result of
the intrinsic order of our array and the 2D character our
definition of Jc has. So, this result should be extrapolated
with caution to real ceramics where the grains are randomly
oriented as previously pointed out. In the insert of figure 2
the difference betweenJc0 in 3D samples and 2D samples
is displayed. It clearly exhibits a maximum aroundp = 0.8
that strongly influences some of the results presented below.

Figure 3 showsJc0 versusa for different values ofp
for samples withN = 30 (similar results were obtained
for N = 20 andN = 15). For p > 0.6 a saturation
in Jc0 appears, indicating that the critical current increases
like the sample cross-section. Forp < 0.6, the curves
have well-defined maxima which can be explained if we
assume that about somea the number of conducting paths
in the limiting plane increases more slowly than the sample
cross-section. The behaviour of the curve forp = 0.36 is

Figure 3. Jc0 versus a dependences for different fractions
of the superconducting phase, p. From the upper curve to
the bottom, p = 0.96, 0.88, 0.76, 0.60, 0.54, 0.48 and 0.36.

not as clear since no percolation is achieved fora < 10,
suggesting the existence of some threshold dimension above
which, for a givenp, percolative conduction takes place. A
similar threshold dimension was also reported by Octavio
et al [24] in a different context.

The self-field effects were calculated from equations (2)
and (3) by substituting the results from ourJc0 simulations.
Two limiting cases should be considered. Firstly,

Jc0a

2H0
� 1 (5)

which implies thatJc ∼ 1/aα (α = 1 for the exponential
model andα = 1/2 for Kim’s model). Then, for lower
values of the film thickness, greater values ofJc will be
achieved, as is commonly accepted from self-field analysis.
The second case is

Jc0a

2H0
� 1 (6)

which implies that
Jc = βJc0 (7)

where β = 1 for the exponential model andβ = 1/2
for Kim’s model. Then, optimal dimensions would be
determined byf (a, p).

Figure 4 shows theas/L versusp plots for N = 20
andN = 30, whereas is the sample thickness for which
Jc0 is a maximum or saturates as plotted in figure 3 and
N is the number of grains in the direction of the current
flow. The errors (±a0/L) are not plotted in the figure for
clarity. It is shown that for high-quality samples (p > 0.85)
very thin samples are ideal for obtaining highJc0 values.
For intermediate-quality samples (0.6 < p < 0.85) where
greater difference appear betweenJc0 in 3D samples and
2D samples the better values ofJc0 are achieved for
as ≈ 0.5L. For very poor samples (p < 0.4) the highestJc0
appear for very bulk samples where more percolative paths
could appear. If the condition (7) is fulfilled the previous
results forJc0 are the same forJc, and thus they suggest
simple rules for obtaining high values ofJc in granular
superconductors.
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Figure 4. a/L versus dependences for N = 20 (◦) and
N = 30 (�).

Figure 5. Jc versus a and Jc0 versus a dependences for
different values of p: (a) p = 0.48; (b) p = 0.96.

The influence of the self-field effects (i.e. the
comparison betweenJc and Jc0) is plotted in figure 5 for
two characteristic values ofp, usingH0 = 100 A cm−1,
Jc0 = 500 A cm−2 anda0 = 10−3 cm. From them, we can
argue that self-field effects are more visible for high values
of p, for which Jc saturates instead of decreasing.

Finally, figure 6 shows the difference betweenJc0 and
Jc as a function ofJ ′c0/2H0 for different values off (a, p).
This makes it evident that the influence of the self-field is

Figure 6. Jc0 − Jc versus J ′c0a/2H0 for different values of
f (a,p).

determined byJ ′c0a/2H0 for the range entire of percolation
possibilities: the lower it is, the lower will be the self-field
effects.

4. Conclusions

We showed the influence of the percolative current paths
in the Jc dependence on sample dimensions of granular
superconductors. We demonstrated that, under certain
conditions, self-field effects dominate theJc dependence
on sample dimensions. However, if these conditions are
not fulfilled, Jc is determined by the percolative character
of the current. This means that, even when self-field effects
are disregarded, the critical current density is thickness
dependent. We proposed optimal sample dimensions as
a function of the fraction of the superconducting phase in
the sample using realistic parameters. Two extremes are
well defined: samples with high superconducting fractions
show the highest critical current densities when very thin,
while bulk samples are demonstrated to perform better if
the superconducting fraction is low.
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