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The azimuthal critical state of a superconducting hollow cylinder
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Abstract

We use the critical state model to calculate the flux profiles and magnetization curves for type II superconducting hollow
cylinders of different wall thicknesses subject to an azimuthal magnetic field produced by a coaxially arranged current-carry-
ing wire. We analyze the cases of field-independent and field-decaying critical current densities, and systematically compare
the results with those expected for the *‘conventional’’ slab geometry using parameters typical of a high temperature ceramic
superconductor. Some new features are observed for the hollow cylinder, such as the different shape and the asymmetry of
the flux distribution profiles, as well as the strong increase of the full penetration field and the field at which the
magnetization curves have maxima, with the wall thickness. In our opinion, this feature is the one that should be compared

with the experiment in order to test our results. © 1997 Elsevier Science B.V.
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1. Introduction

Although straight vortices are widely analyzed in
the literature on type II superconductors, circular
vortices (which can be visualized as doughnut shaped
flux tubes containing one flux quantum) have been
rarely studied. However, such vortices can be present
when transport currents are applied [1], and are
thought to have a relevant role in the flux dynamics
of high temperature superconductors [2,3]. De
Gennes, for example, refers to them briefly in Ref.
[4], while Tinkham [1] proposes a simple model for
describing the behavior of the circular vortices which
appear in a pinning-free type II superconducting bulk
cylinder supporting an axial current. More recently
Kozlov and Samokhavalov [5-7], and Genenko [8]
have approached the subject by performing the exact
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calculation of the flux structure associated to circular
vortices in solid cylinders. A similar work has been
carried out by us [9,10] for the case of a hollow
cylinder exposed to an azimuthal magnetic field, in
which the appearance of asymmetric Bean—Living-
stone surface barriers is reported. Later on, surface
barriers of circular vortices close to a flat surface
have been treated by Samokhvalov [11]. The dynam-
ics of helical vortices produced by the combination
of axial transport currents and magnetic fields in a
superconducting wire have been treated by Clem [12]
and, more recently, by Shvarster et al. [13].

The case of circular vortices in type II supercon-
ductors with pinning is a more complicated subject,
and exact analytical expressions for the flux and
current distributions are extremely difficult to obtain.
From the experimental point of view, the extensive
work of LeBlanc and coworkers must be pointed out,
particularly their study of the response of cylinders
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submitted to superimposed azimuthal and axial mag-
netic fields both for conventional [14] and high
temperature [15] type II superconductors. The calcu-
lation of the flux distribution for such systems can be
performed with the help of the critical state model
[16,17] originally conceived for straight vortices (i.e.,
only axial fields applied). This kind of approach has
been explored theoretically by Koppe [18], and
Pérez-Gonzalez and Clem [19].

In this paper, we apply Bean’s [16,17] and Kim’s
[20] critical state hypotheses to a type II supercon-
ducting hollow cylinder with pinning subject to an
azimuthal magnetic field produced by a current-car-
rying coaxial wire. We calculate and plot, in both
cases, the flux distribution due to the presence of
circular vortices into the wall of the cylinder, the
magnetization curves, and the dependence of the full
penetration field (H*) on the wall thickness. We
bring detailed formulae for all these curves in the
case of Bean’s hypothesis, while numerical results
are obtained under Kim's hypothesis. Interestingly,
we observe nonlinear flux profiles for the Bean's
model, clearly different from the slab geometry. The
application of Kim’s hypothesis, on the other hand,
yields profiles with curvature opposite to the one
corresponding to the conventional geometry. In both
cases H " shows a stronger increase with wall thick-
ness as compared with the slab. In the case of Kim’s
hypothesis, the thickness dependence of the field at
which magnetization maxima occur is also plotted,
and shows a behavior analogous to the one of H*.

2. Statement of the problem

As originally proposed in Ref. [16], when a finite
sample of type II superconducting material is in the
mixed state, the vortices are distributed throughout
the sample in such a way that, in each pinning
center, a vortex (or a vortex bundie) is in equilibrium
due to the compensation of a Lorentz-like force and
a pinning force. This state of the entire sample is
called critical, and the resulting flux density distri-
bution, #(r), can be obtained by solving the equation

VXh(r) = +uJ.(r) (1

where J,(r) is the local critical current density.
Consider the case of an infinite hollow cylinder

St

4b

Fig. 1. Hollow cylinder plus current-carrying wire arrangement
showing, in a simplified fashion, the current and magnetic flux
distributions {above), and an azimathal magnetic flux profile in
the critical state (below).

with inner and outer radii a and b, respectively,
made of a type II superconductor with pinning. An
infinite coaxial wire carrying a current / exposes the
cylinder to an azimuthal magnetic field. For this
case, Eq. (1) can be written, in cylindrical coordi-
nates, as:

d i
)+ —h(r) = £y () (2)

where r is the radius of the point for which 4 is
calculated, and the ““ 4’ symbol expresses the direc-
tions of the current near the inner {r = @) and outer
(r=b) surfaces of the hollow cylinder. The upper
section of Fig. 1 shows (for the case of a non-infinite
cylinder) a simplified example of how A(r) and the
shielding currents, Jc(r), are arranged into the wall
of the cylinder when the applied field is increasing.

The boundary conditions for #(r) result from the
application of Ampere’s law over circular paths ar-
ranged with the same symmetry of the system. If it is
applied over a path with radius r, < a very close to
the inner surface of the cylinder, we get:

ol
2ma

h(a) =

(3)
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whilst, if it is applied over a path with radius r, > b
very close to the outer surface of the cylinder, taking
into account that the shielding currents circulating
parallel to the cylinder’s axis compensate due to
charge conservation, we get:

h(b) = ;‘:; : (4

In his original paper [16], Bean treated the special ~

case when the critical current density is independent
of the position (or, equivalently, of the local flux
density). We will call this case Bean's hypothesis,
which takes place when J.(r) is replaced by the
constant value J, in Eq. (2).

In Ref. [20], Kim et al. considered that the magni-
tude of the critical current density appearing in Eq.
(1) dependent on the local field, as:

J.(0) 5)
1+ (h/hy)
where J,(0) is the critical current density at zero
field, and 4, is the magnetic induction at which the
critical current of the superconductor decays to half
of his zero-field value. We will call this Kim’s
hypothesis. Then, the equation analogous to Eq. (2)
in this case turns to be:

d ! + 1y J2(0)
N OV B

Here, boundary conditions Egs. (3) and (4) are
still valid.

J.(h) =

o

e

(b)

3. Results and discussion

3.1. Be;zn 's hypothesis
The general solution of Eq. (2) can be written as:

C r )
h(r) == £ g 1 (0) ()

where C is an integration constant which can be
calculated when the boundary conditions Egs. (3)
and (4) are introduced. It is convenient to split the
resulting expressions according to different stages of
increasing or decreasing applied field (or, equiva-
lently, applied current), as is usual in the literature
[16,17]. In order to do that, it is convenient to define
a few parameters. The lower part of Fig. 1 shows a
hypothetical flux density versus r profile within the
cylinder wall in current increase conditions (observe
that we have represented asymmetric field penetra-
tions from the inner and outer surfaces, which is
coherent with our later results). This situation is
similar to that represented in Fig. 2(a), in which Aa
and Ab are defined as the radial distances from the
inner wall to the points of maximum penetration of
the field from r=a and r= b, respectively. Fig.
2(b) shows a particular case in which the wire
current has been increased to a value /™ called full
penetration current for which the inner and outer
flux density profiles just ‘‘meet’” at some point at a

a b a

- |<——>

Aa—a A-a
Ab-a

-

Aad' ~ g

<
A-a

AY — ¢

I b a b

Fig. 2. Hypothetical flux distribution profiles in the critical state for increasing wire curreiit before **full penetration’ (a), increasing wire
current in the case of **full penetration’” (b), and decreasing wire current after having reached some maximum current (c).
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distance A from the center. Fig. 2(c) shows the
situation where, after a maximum current increase to
Imax (whose profile has been represented in dotted
lines), it has been decreased to some finite value.
There, Ad and A}’ are defined as the distances
from the inner radius to the local flux density min-
ima closer to r =g and to r = b, respectively.
The results, are as follows.

Increasing field
(@ i<i*

Mo 11 A
h(")=7 —Jor+—|——J.al|ifa<r<Aa
r

(8)
h(r)=0ifAa<r<Ab (9)

h(r)=%

(i
Jcr+—(——Jcb2)]ifAb5rsb
r\m
(10)
(b)i>i”

Mo L 2|
h(r)=T -—Jcr-f-; —+Ja||ifasr<A4

2 ™
(11)
ILLO l l )
W(ry=—|Jor+—{——J b ||iffA<r<b
2 rim
(12)
where
i , ,
i*=?Jc(b‘—a‘ (13)
/i . '
Aag= —(—-&-Jca') (14)
AT
1 i -
Ab=\/—(——+Jcb2) (15)
. ™
and
a*+ b
A= (16)

Decreasing field

Case (3) 2i* <i,
(@) i, —2i<i<2i®

M‘0~ 1 1 o)
h(r)=— Jur-}-—(——]ca' ifa<r<Ad
2 i rAT
(17)
Mo 1 im;\x 2
hry=—|—-Jr+— +J.a
| r\ o
ifAd <r<A (18)
au'o- 1 imax 9
h(ry=—\Jr+— —-—Jcb~) ifA<r<A¥b
2 i Fyo
(19)
fo [ Hii 2914
hr)y=—|=Jor+—=|—+Jb*||ifAV <r<b
2 i r\m
(20)
()0 <i<iy, —2i"
[ 17
;z(,»)='{—L3 Jcr+—(——Jca2)]ifa$rsA
2 | rim
(21)

Iu’O- 1 i )
i?(r)=z— —Jor+—t—+J b | |ifA<r<b
ri

(22)
Case (4) i, < 2i" (formulas (17)—(20) hold), where

Ad =1/ a? X 23
TV T 2a (23)
and
o] imax—i
AV =/ b*— (24)
2mJ,

Fig. 3 shows these results [or the particular case
of a 10 mm thick wall hollow cylinder compared to
the analogous ones corresponding to a 10 mm thick
infinite slab subject to a field parallel to its surfaces.
A critical current density J, = 10° A/m* (= 102
A/cm?) was chosen in order to mimic the case of a
typical high temperature YBa,Cu,0, superconduct-
ing ceramic [21]. In order to make the comparison
easier, we plotted the external field of the cylinder at
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r=a in the y-axis, instead of i. Two differences the cylinder, the following physical idea helps to get
between the flux distribution of the slab and that of a further intuitive picture of the differences between
the hollow cylinder are clearly observed. First, the the slab and cylinder geometries. The critical state
cylinder shows nonlinear profiles both for increasing model arises, for the slab, from the equilibrium
and for decreasing applied fields. Second, its profiles =~  between the Lorentz-like and the pinning forces,
are not symmetric. It is worth noting that the cylin- which results in linear flux profiles with slopes
der ‘‘supports’’ relatively high fields at the inner proportional to the critical current density, J,. How-
wall without being completely penetrated (Fig. 3c); ever, the circular vortices appearing in the cylinder
however, when high wire currents are applied, the are submitted to a new effect: a ‘‘shrinking force”
shielding capacity tends to zero, and a nearly hyper- which tends to reduce the vortex radius to zero (this
bolic profile is obtained. It should be noticed that, is connected with the corresponding free energy
contrary to the case of the slab, in the cylindrical decrease [1,10]). We can think that this force con-
geometry the slopes of the profiles are not necessar- tributes to the rearrangement of the flux in such a
ily proportional to the shielding currents, so a hyper- way that the magnitudes of the slopes are no longer
bolic profile, for example, does not mean that there proportional to J_, but increase from the outer to the
is a single direction current circulating parallel to the inner walls of the cylinder in such a way that, for
z-axis! Although these effects are clearly related to example, one can find a slope smaller that J, close
the asymmetry and shape of the field in the case of to r=25b (small vortex density), while the slope is
14000-\__‘. a ] )
12000+ " - ’ T T
< ~. - ~. ‘\\ S » - _’,,/ ‘// -
= 6000: e T //—'/ . 7 -
40004 - el LT T St
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
60000
50000, c d
400004\ o 1
p— \‘ ‘\ T E \\
£ 300004 " 1
= 200004, 1
— - e - =
O T ,’g . T T T - T =
0.001 0.009 0.011 0.001 0.003 0.005 0.007 0.009 0.011
r[m] r[m]

Fig. 3. Flux distribution profiles following Bean’s hypothesis. (a) and (b) 10 mm thick infinite slab for increasing and decreasing fields,
respectively; (c) and (d) 10 mm thick wall hollow cylinder for increasing and decreasing azimuthal field, respectively. The field in (b)
decreases from a maximum of 700 A /m. while it decreases from 6000 A /m in (d).



44

bigger than J_ close to r = a (high vortex density).
This can be quite easily checked out, as a matter of
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fact, for the profiles depicted in Fig. 3{c).

The magnetization of the hollow cylinder can be
calculated, in a straightforward fashion, by substitut-
ing the flux distribution expressions, Egs. {8)—(24),

in:
B
M = _p—t— = H (25)
0
where
I In(r)de
P (26)
and
[h; b
_“2wr ! 2
= [rar 2m{(b—a) ln(a) (27)

In Eq. (26) the integration takes place over the
superconducting volume. The average expressed by
Eq. (27), however, has been used for H since here
the magnetic field is not uniform, as in the case of
the slab (note that the integrand of the upper integral
is just the magnetic field if there was no supercon-

ducting material),

We obtained the following results for the magne-

tization of the hollow cylinder.
Increasing field
@i<i”
{ i
—+J.a”
| i ¢
M= b ) 4—1n i
( a 1y Lot
™
1 (i )
—|=+Ja
J.a* JoAm
+ In
2 a
1 {
(3
J.b* J. e
+ In (28)
b

b)i>i"
PPt P i
= 2l :
4( b - (l) 2b"
5 a’+ b’
+b°1In 5 (29)
Decreasing field
Case (1) 2i* <i_,,
(@) iy — 217" <i<i,
' i
i J.at+ =2
M: _1 I_lmaxln « 27‘_
b_(l dar JbZ_Imax_l
) 2w
b* +a?
Jca2 a >
+ In :
2 (l:+ Tpax — 1
2w/,
b +a’
J.b* >
BT I (30)
2w,
2500
20009 % b c
i . d
10004 = S 1
= sgod T T s
s 500+ P— ot
= 5004 % N
1000 SN :
-1500 \-\»\:4
-2000 : ‘ :

T T T
0 50 100 150 200 250 300
i[A]
Fig. 4. Dependence of the azimuthal magnetization with the wire
current for different wall thicknesses foliowing Bean’s hypothesis.
(@) b—a=10mm, (b) b—a=7 mm. (c) b— a=5 mm and (d)
b—a=3 mm.
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(b) 0 <i<ip,—2i"
A . (@ +b? (@t + b7
M=———|a*In| —=— | +b°In >
4(b—a) 2a” -
(31)

Case (2) i_,, <2i* (formula (30) holds). )

Fig. 4 shows these results for different thlcknesses
of the wall. As in the case of a slab, the magnetiza-
tion increases with the applied field (or wire current,
in the case of the cylinder), and saturates at a certain
value H = H,, which corresponds to the magnetic
field at the inner wall of the cylinder when the full
penetration current has been reached. It should be
noticed that we have used the field at the inner
surface of the cylinder in the y-axis of the flux
profiles in order to make easier the comparison with
the slab geometry, while our choice for the x-axis of
the magnetization plot was the wire current, since it
readily connects our results with a possible experi-
ment (suggested below).

If we plot H, versus the thickness of the cylin-
der wall, we obtain the plot shown in Fig. 5, which
also displays the thickness dependence of the full
penetration field for a slab according to Bean’s
hypothesis. After quite linear dependences below a
thickness of 1 mm, there is a dramatic departure in
the behavior of both systems when the wall is thicker.
We believe that the obtention of the dependences
depicted in Fig. 5, as extracted from magnetization
measurements, would be the strongest experimental

30000

250001
=
£ 20000
i - hollow cylinder
=
% 150007
& 10000+
£
=
#5000+
[

0.001 0003 0005 0007 0009 00[1
b [m]

Fig. 5. Dependence of the full penetration field with slab thickness
(left surface taken at r=1 mm) and with the thickness of the
cylinder wall (inner radius a='1 mm) following Bean’s hypothe-
sis.
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Fig. 6. Flux distribution profiles for increasing fields following
Kim’s hypothesis. (2) 10 mm thick slab, (b) 10 mm thick wall
hollow cylinder.

test to show the differences between the critical state
of the two geometries.

3.2. Kim’s hypothesis

Since Eq. (6), contrary to the case of Bean’s
hypothesis, does not have an analytical solution, we
had to solve it through numerical methods '. We
computed only the case of increasing wire currents.
For the calculations, we used J.(0)=10% A/m’
(=10 A/cm®) and hy/pe =700 A/m (9 Oe). It
should be observed that this is around the value of
the applied field for which the critical current density

! We used the option NDSolve from Mathematica version 2.2
(see Ref. [22]). Additionally, we had 1o set up a program to deal
with the singularity arising when A= — k.
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T T T T
0 50 100 150 200 250 300

i[A]

Fig. 7. Dependence of the azimuthal magnetization with the wire
current for different cylinder wall thicknesses following Kim’s
hypothesis. (a) 10 mm, (b) 9 mm, (c) 7 mm, (d) 5 mm and (e) 3
mm.

of a typical YBa,Cu,0, ceramic sample decays to
half its value at zero field [21]. Fig. 6 shows the flux
profiles in the critical state for a 10 mm thick wall
hollow cylinder compared with the analogous one
corresponding to an infinite slab submitted to a field
parallel to its surfaces under Kim’s hypothesis. Al-
though both geometries give nonlinear profiles, the
curvatures are negative and positive for the slab and
the cylinder, respectively. As in the case of Bean’s
hypothesis, the flux profiles are highly asymmetric
for the cylinder. Finally, the hyperbolic-like profiles
obtained for relatively high currents should be ob-
served.

Fig. 7 shows the magnetization curves for the
cylinder. The maxima typical of the slab geometry
(which do not correspond to the respective full pene-
tration currents, as in the case of Bean’s hypothesis)
are here qualitatively reproduced, as well as the
shape of the curves.

Fig. 8 shows the dependence of the full penetra-
tion fields and the fields corresponding to the magne-
tization peaks (HJ,,, HE)), on the thicknesses of the
two systems under Kim’s hypothesis. Below thick-
nesses of approximately 1 mm, both characteristics
are quite linear, while positive curvature appears in
the case of the cylinder for higher thicknesses. A
further increase in the dimension of the systems
gives greater differences between the slab and cylin-
drical geometries. If we take into account the strong

16000
140004
12000 hollow cylinder )
* P
— 10000 Hoy Hy Ve
£ /
<, 8000+
=
= 6000
*I *slab
1 P
4000 L H g H
2000+ /,/ I

0 : ‘ :
0001 0003 0005 0007 0009 0.11
bm]

Fig. 8. Dependence of the full penetration field with the thickness
of the slab (left surface taken at » = 1 mm) and with the thickness
of the cylinder wall (inner radius a=1 mm) following Kim’s
hypothesis. The field at which the magnetization peaks is also
plotted against the cylinder wall thickness.

field dependence of the critical current densities of
typical superconducting ceramics with the applied
field [21], it is reasonable to believe that an experi-
ment performed on hollow cylinders made of such
material could follow our results for Kim’s hypothe-
sis. If this is so, *‘thick”” walls must be explored, in
order to avoid misleading similarities between the
cylindrical and the slab cases occurring for thin
walls, as shown in Fig. 8.

A toroidal pick-up coil wound on a superconduct-
ing tube would be a good experimental setup for
measuring the average azimuthal magnetic induction
into the wall, produced by a coaxial current (a
similar detection arrangement has been used in Ref.
[15] for different purposes in the case of constant
geometry superconducting ceramic cylinders). If the
current is increased in time at a certain rate, and the
coil voltage output is electronically integrated, a
signal proportional to the azimuthal magnetic induc-
tion will be obtained. The / versus B curves should
be measured on cylinders of different outer radii (or
on a single cylinder after different reductions of the
outer radius by mechanical methods), allowing the
attainment of M versus i curves and then, character-
istics suitable for comparison with our results as
displayed in Figs. 5 and 8. For such an experiment, a
very homogeneous superconducting material will be
needed in order to avoid the variation of the zero-field
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J. along the radial direction, which would affect the

change of the azimuthal magnetization in a m1slead—r

ing way when reducing the outer radius.

4. Conclusions

We have calculated the flux profiles, the magneti-
zation curves, and the thickness dependence of the
flux penetration field for the critical state of a super-
conducting hollow cylinder subject to an azimuthal
magnetic field under Bean’s and Kim’s hypotheses,
and compared those characteristics with the “‘classi-
cal”’ case of a slab submitted to a magnetic field
parallel to its surfaces. We obtained detailed analyti-
cal expressions for Bean’s case and numerical results
in Kim’s case for the cylindrical geometry consider-
ing superconducting parameters similar to those ex-

pected for a typical high temperature superconduct--

mg ceramic.

The critical state arising from the cylindrical ge-

ometry shows some curious differences when com-
pared with the slab one. The cylinder profiles are
nonlinear under Bean’s hypothesis, while they are
linear for the slab geometry. Kim’s hypothesis gives
nonlinear profiles in both geometries, but the curva-
tures are opposite. The magnetization curves are
qualitatively similar between the slab and the cylin-
der, but the dependences of the full penetration fields
and the fields at which the magnetization peaks show
sizable differences for wall thicknesses above a few
millimeters. We believe that these latter character-
istics are the ideal ones for testing our results experi-
mentally.
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