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Josephson effects are macroscopic quantum phenomena that can be understood at the undergraduate
level with the help of mechanical analogs. Although Josephson junctions in zero magnetic field can
be modeled by pendulum analogs, a simple mechanical model of Josephson junctions in nonzero
fields has been elusive. We demonstrate how the magnetic field dependence of the maximum
Josephson current can be visualized by the analogs of a set of interconnected pendula attached to
pulleys. © 2003 American Association of Physics Teachers.
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I. INTRODUCTION

A Josephson junction can be defined as a superconduc
insulator–superconductor sandwich that allows superc
ducting tunneling, that is, the resistanceless flow of Coo
pairs through the junction. Let us assume that the dimens
of the sandwich perpendicular to the tunneling current
negligible. When a direct current is forced through such
junction,1 the gauge invariant phase difference between
electrodes,w, adapts to the applied current according to t
Josephson equation2,3

I j5I c j sinw, ~1!

where I j is the current in the junction andI c j is its critical
current. This tunneling is not dissipative unless the app
current surpassesI c j .

When I j.I c j , the junction enters a dissipative regim
where quasiparticles are allowed to flow. To account for t
possibility, the electrical equivalent of the junction must i
clude a resistor in parallel. Finally, the dimensions of ma
real junctions are not negligible, and a parallel capac
must also be added, as shown in the left panel of Fig. 1. T
the electrical equivalent of a realistic Josephson junct
consists of an ideal superconductor–insulato
superconductor sandwich obeying Eq.~1! in parallel with a
capacitor,C, and a resistor,R. This combination can be de
scribed by the differential equation:

I 5
\

2e
C

d2w

dt2
1

\

2e

1

R

dw

dt
1I c j sinw, ~2!

where I is the total current in the circuit consisting of
Josephson junction, a capacitor, and a resistor in paralle

Equation ~2! is analogous to the equation obeyed by
physical pendulum attached to a pulley, as shown in the r
panel of Fig. 1. In the following we will refer to this mode
of a Josephson junction as a ‘‘pendulum.’’ The equation
motion of the pendulum is

Mgr5G
d2f

dt2
1h

df

dt
1mgLsinf, ~3!

whereM, g, r, G, f, h, m, andL represent the mass hangin
from the rope, the acceleration of gravity, the radius of
pulley, the moment of inertia of the pendulum, the an
between the pendulum rod and the vertical, the visc
damping, the mass of the pendulum’s bob, and the lengt
the pendulum, respectively. By comparing Eqs.~2! and ~3!,
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we can establish a parallel between analogous magnitu
which we present in Table I.

The dynamics of the system can be described as follo
As M increases, the deflection of the pendulum increas
achieving an equilibrium state for each value ofM. This
equilibrium deflection increases until the position of the pe
dulum is horizontal, which occurs at a ‘‘critical’’ mas
Mmax5mL/r. If the mass is further increased, the pendulu
starts to swing, with an average frequency that increases
M. ~Note that the angular frequency associated with the
cular motion is smaller along the upper part of the path a
bigger along the lower part.! The analogy to the Josephso
junction is the following. As the current is increased, t
Josephson phase difference across the junction accom
dates to allow a nondissipative current flow. This accomm
dation happens until the system reachesI c j , where an oscil-
lating voltage drop appears through the junction, whose t
average increases as the applied current does.

This beautiful analogy has been commonly used since
1960s to illustrate the dynamics of a single Josephson ju
tion in zero magnetic field,4 and is still used when new Jo
sephson phenomena are discovered.5 However, when two or
more junctions are involved and an external magnetic fiel
applied, the complexity of the existing mechanical analo
increases drastically: the magnetic field ‘‘globally’’ affec
the system by modulating thedifferencebetween thew’s
across the individual junctions. The situation is even m
complicated if the lateral dimensions of a junction are re
tively large~a ‘‘rectangular’’ junction!, in which case it must
be modeled by an infinite array of parallel junctions such
the ones described above.2,3,6

We propose an extension of the pendulum analog for
sephson junctions in parallel, subject to external magn
fields. We concentrate on the pendulum analog of the fi
dependence of the maximum Josephson current that a j
tion ~or a set of junctions! can bear without dissipation an
demonstrate that it can be easily found experimentally. O
experience indicates that the extended model can be an
portant resource for a presentation of Josephson phenom
at the undergraduate level and helps understanding at hi
levels.

II. COUPLED PENDULA ANALOGS FOR
JOSEPHSON JUNCTIONS IN MAGNETIC FIELDS

Figures 2–4 illustrate our mechanical analog for differe
numbers of Josephson junctions in parallel. The idea is
couple as many rigid pendula as the number of junctio
405p/ © 2003 American Association of Physics Teachers
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under consideration by the same rope used to hang the
ing mass,M. Figures 2 and 4 correspond to a dc superc
ducting quantum interference device~SQUID! and to a rect-
angular Josephson junction, respectively. Both cases
widely discussed in textbooks, because the first constit
the most sensitive magnetometer known, and the secon
the junction geometry most commonly found in practice2,3

Figure 3 represents three Josephson junctions that we
use as examples. In contrast to the SQUID and the recta
lar junction, the case of three junctions in parallel is n
widely used in practical devices, although it can be releva
for example, to model small superconducting polycrysta
With the help of our analogy, we can derive the field dep
dence of the Josephson critical current density of three ju
tions in parallel, a case that is rarely discussed in textbo

Before we describe the analogy in detail, we stress tha
will introduce two angles. The angleu is the angle between
the pendula, such that a largeru represents a larger Josep
son phase difference between junctions and hence, a stro
applied field.7 If more than two junctions are involved, it ca
be shown that the phase difference between two consec
junctions is identical, and is given by the phase differen
between the first and last junctions,un,1 , divided by the total
number of junctions.3 The anglef is the overall angular
rotation of the set of pendula, which we define as the ang
deflection relative to the vertical of the first pendulum. U
like u, f varies due to the variation in the massM. This
correlation between mass and phase is equivalent to the
crease of the superconducting phase in one of the mem
of a set of superconducting junctions as the applied curre
increased.8

Let us first consider the case of zero applied magnetic fi
in the three junction system. In this case, the phase differe
between the first and third pendula must be zero~and, of
course, also their phase differences relative to the sec
pendulum!. So, we start our system with the three pend
hanging vertically. Then, as mass is added toM, that is, as
the current through the junctions is increased, the pend
rotate, that is, the overall phase difference,f, increases and
reaches a new equilibrium position. If we keep adding ma

Fig. 1. Equivalent circuit for a single Josephson junction~left! and its pen-
dulum analog~right!.

Table I. Analogies between a Josephson junction and a pendulum~see the
text!. It can be shown thatV is the voltage drop across the junction.

Josephson junction Pendulum
Phase difference,w Deflection,f
Total current,I Applied torque,Mgr
Josephson current,I j mgLsinf
(\/2e)C Moment of inertia,G
(\/2e)(1/R) Viscous damping,h
Voltage,V5(\/2e)(dw/dt) Angular velocityv5df/dt
406 Am. J. Phys., Vol. 71, No. 4, April 2003
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there will be a maximum value at which any further additi
will make the system rotate by itself, that is,df/dtÞ0. This
critical mass is able to bring the three pendula to the h
zontal position,fmax590°. This situation corresponds to
torque of 3mgL, which represents the maximum Josephs
current of the system, 3I c j .

Let us now consider the behavior for nonzero appl
magnetic field for three junctions in parallel. One of the mo
interesting nonzero field situations for three pendula is r
resented by the third diagram in Fig. 3, where the first a
last pendula are vertically down, while the middle one
vertically up. Observe that the difference between the fi
and last angle isu3,15360°, while the difference betwee
the first and middle pendula isu1,25360°/25180°. For this
particular applied magnetic field, the maximum torque
clearly smaller than for zero field, although it corresponds
a local maximum, as we will see.

The idea is that by varying the relative angles between
pendula, we can represent the effect of magnetic fields
arrangements of Josephson junctions. Then, we can calc
or experimentally determine in a simple mechanical fash
the maximum torque of the system for different phase diff

Fig. 2. Calculated maximum mass,Mmax, vs the phase difference betwee
pendula (un,1) corresponding to two Josephson junctions in parallel.I j max

stands for the maximum Josephson current, andF for the magnetic flux at
the junction~proportional to the applied magnetic field!. In the calculations,
M is increased until the system starts to rotate by itself: the correspon
mass~analogous to the maximum Josephson current! is defined to beMmax.
This system reproduces the well-known result for a dc SQUID device.

Fig. 3. Same as Fig. 2, but for the case of three Josephson junction
parallel.
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ences, which is equivalent to the maximum Josephson
rent versus field characteristics of real Josephson arra
ments. As in the zero field case, the maximum torque
simply proportional to the maximum angle,fmax, that the
system can be deflected without rotating by itself.

The results from theoretical calculations are shown
Figs. 2, 3, and 4 for two, three, and infinite pendula in p
allel. Because our goal is to model the magnetic field dep
dence of the maximum Josephson current, our mechan
problem reduces to finding the maximum mass,Mmax, that
can be added without the system rotating by itself. Follow
the analogy between the Josephson voltage and the time
rivative of f ~see Fig. 1!, Mmax is equivalent to the maxi-
mum current without voltage drop in the junction. One a
proach to finding the corresponding equilibrium positio
consists of first writing the total potential energy of the sy
tem and then minimizing it relative to the deflection of t
first pendulum,f1 . ~We neglect the friction at the axes o
the pulleys.! This approach results in an expression that gi
the values ofM at the equilibrium positions of the pendula
a function of f1 . We then maximize this function, from
which we can obtainMmax as a function of the angle betwee
the first and the last pendula,un,1 . Although this calculation
is trivial for two and three pendula, it becomes more co
plicated forn pendula, particularly forn→`.9 However, our
experience is that even the latter case can be understoo
undergraduates. The resulting expressions for the phase
pendence of the maximum Josephson mass,Mmax, are given
below:

Mmaxgr52mgLu~cos~u2,1/2!!u ~n52!, ~4!

Mmaxgr5mgLu~112 cos~u3,1/2!!u ~n53!. ~5!

For an infinite set of parallel junctions, we have

Mmaxgr5m0gLUsin~un,1/2!

un,1/2
U. ~6!

Note that Eqs.~4! and~6! are analogous to the ‘‘classical
result for a dc SQUID,I j max;ucos(pF/F0)u, and to the
Fraunhofer-type pattern expected for a rectangular Josep
junction

Fig. 4. Same as Fig. 2, but for the case of an infinite set of Josep
junctions in parallel. This system reproduces the Fraunhofer-type-pa
typical of a rectangular Josephson junction.
407 Am. J. Phys., Vol. 71, No. 4, April 2003
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I j max;Usin~pF/F0!

pF/F0
U,

respectively.2,3 F is the magnetic flux in the junction propor
tional to the applied magnetic field, andF0 is the flux
quantum.2,3

Figure 5 shows a set of pendula that lets us study exp
mentally the case of two and three junctions.~The photo-

on
rn

Fig. 5. Apparatus for studying two and three pendula analogs of Josep
junctions in a magnetic field. The three pendula experiment correspon
to the applied field associated with the secondary maximum in the crit
current~that is,un,15360°) is illustrated. The three parts in the right secti
of the figure illustrate the analogs to~a! I 50, ~b! 0,I ,I j max , and ~c! I
'I j max .

Fig. 6. Comparison between the experimental results obtained with
setup illustrated in Fig. 5 and the theoretical calculations illustrated in F
2 and 3 for two and three pendula. The experimental points are represe
by black circles~error bars alongx andy are included!, and the continuous
lines correspond to the theoretical fits of Eqs.~4! and ~5!.
407E. Altshuler and R. Garcı´a
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graph was taken when the system was prepared for mea
ments of three pendula.! To accommodate the relative phas
corresponding to different magnetic fields, we need so
tension on the rope before starting to increaseM, which we
achieve by using a rope with two empty measuring cylind
at each end. Once the desired phases on the pendula a
~making good use of the friction between the pulleys and
rope!, we start to add water to the left cylinder. When w
reach the maximum amount of water able to maintain a st
system, we take note of the corresponding volume in
cylinder, which is proportional to the maximum torque f
the corresponding phase difference. Attaining a small frict
in the pulley axes was important for reproducing the theo
ical expectations. Figure 6 shows the comparison betw
the experimental results obtained in this way and the th
retical calculations from Eqs.~4! and ~5!.

III. CONCLUSIONS

We have shown that a set of rigid pendula linked by
common rope reproduces the magnetic field dependenc
the Josephson maximum current of two and three Josep
junctions in parallel, and the Fraunhofer-type pattern
pected from a rectangular junction. The mechanical analo
easy to setup and work out experimentally, at least in the
two cases, and the theoretical calculations can be perfor
by elementary methods. The physical insight gained fr
our mechanical model can be eventually used beyond
sephson phenomena, for example, Young interference
light diffraction by a grating and by a rectangular slit.

Our mechanical model lends itself to problems a
projects suitable for student work. For example, calculat
Mmax vs un,1 for two and three pendula, and then compari
the first one with the applied field dependence ofI j max for a
dc SQUID. An appropriate theoretical project would be
408 Am. J. Phys., Vol. 71, No. 4, April 2003
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extend these calculations to an infinite set of pendula,
compare it with a rectangular Josephson junction. A feas
experimental project would be to construct a mechan
analog to the one depicted in Fig. 5 to experimentally rep
duce theMmax vs un,1 characteristics for one, two, and thre
pendula. It is important to stress that the friction at the p
leys axes must be small.
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