Josephson junctions in a magnetic field: Insights from coupled pendula
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Josephson effects are macroscopic quantum phenomena that can be understood at the undergraduate
level with the help of mechanical analogs. Although Josephson junctions in zero magnetic field can

be modeled by pendulum analogs, a simple mechanical model of Josephson junctions in nhonzero
fields has been elusive. We demonstrate how the magnetic field dependence of the maximum
Josephson current can be visualized by the analogs of a set of interconnected pendula attached to
pulleys. © 2003 American Association of Physics Teachers.
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[. INTRODUCTION we can establish a parallel between analogous magnitudes
which we present in Table I.

A Josephson junction can be defined as a superconductor—The dynamics of the system can be described as follows.
insulator—superconductor sandwich that allows superconAs M increases, the deflection of the pendulum increases,
ducting tunneling, that is, the resistanceless flow of Coopeachieving an equilibrium state for each value Mf This
pairs through the junction. Let us assume that the dimensionsquilibrium deflection increases until the position of the pen-
of the sandwich perpendicular to the tunneling current arelulum is horizontal, which occurs at a “critical” mass
negligible. When a direct current is forced through such av,.=mUr. If the mass is further increased, the pendulum
junction;' the gauge invariant phase difference between thetarts to swing, with an average frequency that increases with
electrodesy, adapts to the applied current according to thepm. (Note that the angular frequency associated with the cir-
Josephson equatith cular motion is smaller along the upper part of the path and
=1 sin 1) bigger along the lower pajtThe analogy to the Josephson

i~ e Ses junction is the following. As the current is increased, the
wherel| is the current in the junction ani, is its critical ~Josephson phase difference across the junction accommo-

current. This tunneling is not dissipative unless the applied/ates to allow a nondissipative current flow. This accommo-
current surpasses; dation happens until the system reachgs where an oscil-

When I;>1;, the junction enters a dissipative regime lating voI_tage drop appears thr_ough the junction, whose time
where quasiparticles are allowed to flow. To account for thisav_el_:]"’.‘g% Incrtefalses als thehappblled current d(l)es. e th
possibility, the electrical equivalent of the junction must in- IS beautiiul analogy has been commonly US€d since the
clude a resistor in parallel. Finally, the dimensions of many}960s 10 illustrate the dynamics of a single Josephson junc-

real junctions are not negligible, and a parallel capacitowtionhin zer% magnetic fielddand 'Sé,;rs":t'g used Whﬁn ntew Jo-
must also be added, as shown in the left panel of Fig. 1. ThusEPNSON phenomena are discov Wever, when two or

the electrical equivalent of a realistic Josephson junctiorf € junctions are involved and an external magnetic field is

consists of an ideal superconductor—insulator—.app”ed’ the complexity of the existing mechanical analogy

superconductor sandwich obeying Ed) in parallel with a increases drastically: th_e magr_1etic field “globally” af,fects
cagacitorC and a resistorR. T)rqisgcor?ibinart)ion can be de- the system_by_ modul_atmg_ thdlfferenc_e be;wee_n the's
scribed b'y ,the differential equation: across the individual junctions. The situation is even more

complicated if the lateral dimensions of a junction are rela-
i d’e % 1ldo _ tively large(a “rectangular” junction, in which case it must
1=5eCae T 2e R gt T eiSing: (20 be modeled by an infinite array of parallel junctions such as
the ones described abo%é®
where | is the total current in the circuit consisting of a \We propose an extension of the pendulum analog for Jo-
Josephson junction, a capacitor, and a resistor in parallel. sephson junctions in parallel, subject to external magnetic
Equation (2) is analogous to the equation obeyed by afields. We concentrate on the pendulum analog of the field
physical pendulum attached to a pulley, as shown in the righiependence of the maximum Josephson current that a junc-
panel of Fig. 1. In the following we will refer to this model tion (or a set of junctionscan bear without dissipation and

of a Josephson junction as a “pendulum.” The equation ofdemonstrate that it can be easily found experimentally. Our
motion of the pendulum is experience indicates that the extended model can be an im-

portant resource for a presentation of Josephson phenomena

d’¢  do _ at the undergraduate level and helps understanding at higher
Mgr=FW+nH+mgLsm¢, 3 levels. 9 P 9 g

whereM, g, r, I', ¢, 7, m, andL represent the mass hanging ||. cOUPLED PENDULA ANALOGS FOR

from the rope, the acceleration of gravity, the radius of the;ngEPHSON JUNCTIONS IN MAGNETIC FIELDS
pulley, the moment of inertia of the pendulum, the angle

between the pendulum rod and the vertical, the viscous Figures 2—4 illustrate our mechanical analog for different
damping, the mass of the pendulum’s bob, and the length aiumbers of Josephson junctions in parallel. The idea is to
the pendulum, respectively. By comparing E¢®.and (3),  couple as many rigid pendula as the number of junctions
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Two pendula (DC SQUID)
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Fig. 1. Equivalent circuit for a single Josephson junctilait) and its pen-
dulum analog(right).

under consideration by the same rope used to hang the driv- T T ——
ing massM. Figures 2 and 4 correspond to a dc supercon- b e e

ducting quantum interference devi¢@QUID) and to a rect- nldegress] (@)

angular Josephson junction, respectively. Both cases aigy. 2. calculated maximum mas,.,, vs the phase difference between
widely discussed in textbooks, because the first constitutgsendula ¢,,) corresponding to two Josephson junctions in paralig

the most sensitive magnetometer known, and the second sgnds for the maximum Josephson current, @nibr the magnetic flux at
the junction geometry most commonly found in pracﬁée. thg ju_nction(propor;ional to the applied magnetic fiéz!dh the calculations, _
Figure 3 represents three Josephson junctions that we wil is increased until the sy;tem starts to rotate by |tse_|f: the corresponding
use as examples. In contrast to the SQUID and the rectangqpﬁa.ss(a”a'ogo“s t%the e iosephson Icuf'mgf'”;d L‘ﬁé’%" max-
lar junction, the case of three junctions in parallel is not 's system reproduces the well-known result for a de SQ eviee.
widely used in practical devices, although it can be relevant,

for example, to model small superconducting polycrystalsthere will be a maximum value at which any further addition

With the help of our analogy, we can derive the field depen- . ; . .
dence of the Josephson critical current density of three juncv—v'.”. make the system rotate by itself, that ég/dt=0. This .
ritical mass is able to bring the three pendula to the hori-

tions in parallel, a case that is rarely discussed in textbooks. " o o
Before we describe the analogy in detail, we stress that w&ONtal position, ¢, =90°. This situation corresponds to a
will introduce two angles. The angleis the angle between torque of 3ngL, which represents the maximum Josephson

the pendula, such that a largérepresents a larger Joseph- current of the system,13;.
son phase difference between junctions and hence, a strongerLet us now consider the behavior for nonzero applied
applied field’ If more than two junctions are involved, it can magnetic field for three junctions in parallel. One of the most
be shown that the phase difference between two consecutiveteresting nonzero field situations for three pendula is rep-
junctions is identical, and is given by the phase differencgesented by the third diagram in Fig. 3, where the first and
between the first and last junctiors, ;, divided by the total last pendula are vertically down, while the middle one is
number of junctiong_ The ang|e¢ is the overall angu|ar Vertica”y up. Observe that the difference between the first
rotation of the set of pendula, which we define as the angulaand last angle ig);;=360°, while the difference between
deflection relative to the vertical of the first pendulum. Un-the first and middle pendula &, ,=360°/2=180°. For this
like 6, ¢ varies due to the variation in the mak& This  particular applied magnetic field, the maximum torque is
correlation between mass and phase is equivalent to the imlearly smaller than for zero field, although it corresponds to
crease of the superconducting phase in one of the membeaslocal maximum, as we will see.
of a set of superconducting junctions as the applied current is The idea is that by varying the relative angles between the
increased. pendula, we can represent the effect of magnetic fields on
Let us first consider the case of zero applied magnetic fielédrrangements of Josephson junctions. Then, we can calculate
in the three junction system. In this case, the phase differenaar experimentally determine in a simple mechanical fashion
between the first and third pendula must be z@nd, of the maximum torque of the system for different phase differ-
course, also their phase differences relative to the second
pendulum. So, we start our system with the three pendula

hanging vertically. Then, as mass is addedvpthat is, as Three pendula
the current through the junctions is increased, the pendula
rotate, that is, the overall phase differenge,increases and
reaches a new equilibrium position. If we keep adding mass, \
~ 50
Table I. Analogies between a Josephson junction and a pendiskeenthe £ 40
tex?). It can be shown that is the voltage drop across the junction. U
Josephson junction Pendulum 2 20
Phase differencep Deflection, ¢ 5 10
Total current,| Applied torque Mgr EE 0
Josephson current; mgLsin¢ -600-400-200 0 200 400 600
(h/2e)C Moment of inertia,l’ 0, [degrees] (> @)
(h/2e)(1IR) Viscous dampingy
\oltage,V = (/2e)(de/dt) Angular velocityw=d¢/dt Fig. 3. Same as Fig. 2, but for the case of three Josephson junctions in
parallel.
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o pendula (rectangular junction)
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Fig. 4. Same as Fig. 2, but for the case of an infinite set of Josephson

junctions in parallel. This system reproduces the Fraunhofer-type-pattern
typical of a rectangular Josephson junction.

ences, which is equivalent to the maximum Josephson CUkig 5. apparatus for studying two and three pendula analogs of Josephson
rent versus field characteristics of real Josephson arranggmctions in a magnetic field. The three pendula experiment corresponding
ments. As in the zero field case, the maximum torque igo the applied field associated with the secondary maximum in the critical
simply proportional to the maximum angle,,.,., that the current(_that is_,0m1= 360°) is illustrated. The three parts in the right section
system can be deflected without rotating by itself. of the figure illustrate the analogs ta) =0, (b) 0<I<Ijna, and(c) |

The results from theoretical calculations are shown in~'ima
Figs. 2, 3, and 4 for two, three, and infinite pendula in par-
allel. Because our goal is to model the magnetic field depen-
dence of the maximum Josephson current, our mechanical sin(7d/dy)
problem reduces to finding the maximum malsk,,,,, that I max~ 7D/ D,
can be added without the system rotating by itself. Following . 3 . . . .
the analogy between the Josephson voltage and the time d@spectwelfs @ is the magnetic flux in the junction propor-
rivative of ¢ (see Fig. 1, M iS equivalent to the maxi- tional to ghe applied magnetic field, amly is the flux
mum current without voltage drop in the junction. One ap_qua_ntumz.' .
proach to finding the corresponding equilibrium positions Figure 5 shows a set of pendula that lets us study experi-
consists of first writing the total potential energy of the sys-Mentally the case of two and three junctioiihe photo-
tem and then minimizing it relative to the deflection of the
first pendulum,¢,. (We neglect the friction at the axes of

the pulleys). This approach results in an expression that gives 70 Two
L o pendula
the values oM at the equilibrium positions of the pendula as 60r
a function of ¢,. We then maximize this function, from 50
which we can obtaiM ,,, as a function of the angle between 40
the first and the last pendulé, ;. Although this calculation 30
is trivial for two and three pendula, it becomes more com- 20
plicated forn pendula, particularly fon—o.® However, our 10
experience is that even the latter case can be understood by — 0
undergraduates. The resulting expressions for the phase de- g -10t
pendence of the maximum Josephson miks,,, are given - 300 -200 -100 0 100 200 300
below: O 60
25 50  Three pendula
Mma@r=2mgL|(cos 6,42))| (n=2), 4 40
30
2
Ma9r=mgL(1+2 cog634/2))| (n=3). (5) 18
For an infinite set of parallel junctions, we have 0
-10F
Sin( 6, 4/2) -800-600-400-200 0 200 400 600 800
M a0 = Mog L o2 | (6) 0, [degrees]

Note that Eqs(4) and(6) are analogous to the “classical” Fig. 6. Comparison between the experimental results obtained with the

setup illustrated in Fig. 5 and the theoretical calculations illustrated in Figs.
result for a dc SQUID’IJ' maX~|COS(77(I)/(D0)|’ and to the 2 and 3 for two and three pendula. The experimental points are represented

FraUUhOfer'type pattern expected for a rectangular Josephs@g plack circles(error bars along andy are included, and the continuous
junction lines correspond to the theoretical fits of E¢®. and (5).
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graph was taken when the system was prepared for measumxtend these calculations to an infinite set of pendula, and
ments of three pendu)alo accommodate the relative phasescompare it with a rectangular Josephson junction. A feasible
corresponding to different magnetic fields, we need somexperimental project would be to construct a mechanical
tension on the rope before starting to incre’sewhich we  analog to the one depicted in Fig. 5 to experimentally repro-
achieve by using a rope with two empty measuring cylindersiuce theM .5, vs 6,, ; characteristics for one, two, and three
at each end. Once the desired phases on the pendula are gehdula. It is important to stress that the friction at the pul-
(making good use of the friction between the pulleys and thgeys axes must be small.

rope, we start to add water to the left cylinder. When we

reach the maximum amount of water able to maintain a stati® CKNOWLEDGMENTS
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Our mechanical model lends itself to problems and °See, for example, Eq8.69 for two junctions in Ref. 3.
projects suitable for student work. For example, calculatinggA necessary physical assumption in this case is that the sum of the masses
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the first one with the ap_plied field d_EDende_ncdjm‘ax for a parallel, taking into account that the Josephson critical current of the
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[ll. CONCLUSIONS
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