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I am never content

until I have constructed a mechanical model
of the subject I am studying.

If T succeed in making one, I understand;
otherwise I do not.

Lord Kelvin

A good mechanical model has the unique power to connect our intuition with the most
abstract physical phenomena. Although purely mechanical systems may look old fash-
ioned in contemporary Physics, the so called granular state has focused much attention in
the last decade. Avalanche dynamics is one of the most fascinating features of some gran-
ular systems, and is present in other physical contexts, like vortices in the slowly-driven
critical state of type II superconductors. After an introduction to the phenomenology of
type II superconductivity and to sandpile physics, key experiments on vortex avalanches
performed in the last five years are reviewed. Some new experiments on avalanche dy-
namics in superconducting, magnetic and other systems are suggested, in the philosophy
of exploring mechanical analogies as far as possible —earthquakes included. Finally, some
theoretical findings reported in the last three years on vortex dynamics achieved with
the help of a simple cellular automaton (CA) model are reviewed, and further extensions
of the model are proposed. This CA contains the essential ingredients that unify, at least
to some extent, avalanche dynamics displayed by the superconducting and mechanical
systems discussed in the paper.

PACS numbers: 45.70,45.70h,74.60w

Maxwell’s ”molecular vortices” in aether ! constitute, perhaps, the most fruitful mechanical
analog of electromagnetic phenomena ever conceived. It not only allowed him to understand the
production of a magnetic field by an electric current and vice-versa as early as 1892, but led him

to formulate the hypothesis of the existence of a displacement current and the epoch-making idea
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of electromagnetic waves.

Even when Electromagnetism seemed complete at the turn of the century with the experimen-
tal work of Faraday and Maxwell’s equations, electromagnetic fields in the Solid State would prove
to be a fertile ground for devising ingenious mechanical analogies. The opening of the new era of
Superconductivity in 1911, when Heike Kammerling Onnes reported the disapearance of electrical
resistance below 4.2 K in mercury 2, is one example. While mechanical models have helped the
understanding of superconductive phenomena, mechanical (or fluid-mechanical) systems display-
ing a close resemblance with superconductivity have seen their physics clarified with the help of
superconducting theories, or are just developing in parallel. This is the case of superfluids and,
particularly, of sandpiles, which are entering the XXI Century with a whole agenda of unanswered

questions.

1. A Superconductivity primer

The first mechanical analog of Superconductivity is Superfluidity, a phenomenon that has
only been observed for liquid helium 2. The basic characteristic of both is their ability to sustain
particle currents (being either superelectrons or superfluid particles) at a constant velocity for
extended periods of time without any driving force. These currents are the only known examples
of the motion of macroscopic systems without being quickly destroyed by dissipative processes.
To describe the condensed particles in either system, we use a complex macroscopic wavefunction

of the form:

W(F, 1) = /n* (7, £)e D) (1)

where n* is either the number density of super-electrons or the density of the superfluid, and
@ is the phase. It is straightforward from 1 that the amplitude squared of the wavefunction equals
ng. Although the analogy can be pushed further, we will present the next results only for the case
of superconductors. Let us postulate that our macroscopic wavefunction obeys the Schrédingerlike

equation

ih% = 2:n* (%v — ¢ A(7, t)) ’ (7, t) + ¢ (7, 1) ¥ (7, t) (2)

where m* and ¢* are the superlectrons’ mass and charge, respectively} A is the vector potential,
and ¢ is the scalar potential.

Simple manipulations involving equations 1 and 2, under the assumption of position and time

independent n*, give the so-called London equations 5:

% (AJ3(7, 1) ~ B, 1) (3)

*The standard microscopic theory of Superconductivity developed in 1957 by Bardeen, Schrieffer
and Cooper 4 postulates that the superelectrons arrange themselves in pairs, so m* and ¢* are
twice the mass and the charge of ”normal” electrons, respectively. This picture seems to hold not
only for the low temperature, but also for the new high temperature superconductors
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V x (AJs(7,1)) = —B(7, 1) (4)
where A = NT—;*2, E and B are the electric field and magnetic field induction in the super-
conductor, and J; is the superelectron current density. The first of these equations indicate that,
if a constant current density is established along the superconductor, no voltage drop appears, as
expected for a normal metal. In fact, this was the phenomenon observed by Kammerlingh-Onnes
in 1911 for mercury when cooled below what he called the critical temperature, T.. The second
equation accounts for the so called Meissner-Oschenfeld effect 6. These authors observed that,
when a superconducting bulk sample was submitted to a constant magnetic field, and its temper-
ature lowered below T¢, the average magnetic induction into the sample practically switched to
zero. When solving equation 4 one can see that, in fact, the magnetic induction decays exponen-
tially from the applied induction at the sample boundaries to virtually zero at its interior within
a characteristic length, A, known as the London penetration depth. This is due to the appearance
of a shielding current which also decays exponentially from the surface within A.
The combination of 1 and 2 also gives a third equation known as fluzoid quantization law,

which reveals the quantum nature of the macroscopic wavefunction:

}z{J;(F,t)-dh/E(F,t)-ds*:mpo, n=0,1,2. (5)
C S

where C is a closed path into the superconductor limiting a surface S which includes a non-
superconducting inclusion piercing the superconductor in the direction of the applied magnetic
field. The left hand of 5 is called fluzoid, and the equation says that it can only take integer
values of the fluz quantum, ®o = 2,07 - 10~ 3T'm?2. If C is wide enough, we can neglect the first
term of the fluxoid, and then we can safely talk about fluz quatization. The phenomenon was first
observed by Doll and Nibauer 7 and by Deaver and Fairbank & in 1961. Equations 3, 4 and 5 are
good enough to describe phenomenologically a type I superconductor.

Another consequence of postulates 1 and 2 when applied to a junction consisting in a thin
insulating layer sandwiched between two superconducting electrodes is the so-called Josephson
effects 910 A real junction can be modeled as an ”ideal” junction in parallel with a capacitor
(associated to the effect of the finite-area superconducting electrodes) and a resistor (associated
to the ”normal” electrons flowing through the junction due to thermal excitation and/or to excess
applied current).The solution of this equation can be beautifully visualized by means of a mechan-
ical analogue suggested by Anderson in 1964 !! and worked out by Sullivan and Zimmerman in

1974 12,
2. Vortices and the Critical State

2.1. Vortices in ideal superconductors

A more general approach to Superconductivity is the Ginzburg-Landau (G-L) theory 3. It

can be regarded as the application of Landau’s theory of second-order phase transitions to the
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case of superconductors, resulting in the so-called Ginzburg-Landau equations. In fact, equation 2
is just a linearized form of one of them. G-L theory can be conveniently modified to account for
the case of superfluid He, giving the so-called Ginzburg-Pitaevsky equations 4. It is perhaps the
prediction of the existence of type II superconductors the most important result of G-L theory.

Let us define the parameter

K= I (6)

where ¢ is the so-called coherence length (a lengthscale characterizing the maximum spatial
variation of the superconducting wavefunction). Then, type I and type II superconductors cor-
respond to the conditions k < 1/4/2 and k > 1/+/2, respectively. But the striking differences
between type I and type II superconductors are best represented in their H — T" diagrams.

Figure 1a (left)displays the two phases corresponding to type I superconductors, separated by
a line known as the thermodynamic critical field, H.(T). Under that line we find the ”Meissner”
phase (E = 0 into the superconductor), while above there is the ”Normal” phase, where the
material is completely penetrated by the applied field.

Figure la (right) displays the diagram for a ”low T.” type II superconductor, in which three
phases are observed, separated by two lines, H¢1(T') and Hc2(T), known as the lower and upper
critical fields, respectively. While below H.1(T') and above H2(T') type II superconductors behave
qualitatively identical to type I, a new phase known as mized state appears between them. In this
region, the sample is partially penetrated by the applied field. Based on the G-L theory, Abrikosov
proved, in 1957 that this penetration occurs as an hexagonal lattice of vortices, which are ”meso-
scopic” objects whose structure and basic properties will be discussed below 5. Their existence
was directly proved by Essman and Triubein in 1967 through Bitter decoration experiments 6.

Figure 2a shows a rough diagram of a vortex. It consists of a normal cylinder (or core) of radius
¢ paralell to the direction of the applied field which is surrounded by ”vorticial” superconducting
currents decaying within a radius A in such a way that they can be regarded as tiny concentric coils
producing a magnetic induction in the same direction of the applied field (An alternative picture
is that the vorticial currents prevent the Meissner phase outside the vortex to be ”invaded” by the
field inside it!).

Apart from G-L theory, a simple argument allows to calculate the flux associated to a single
vortex. Considering the experimental fact that vortices in the mixed state arrange in an hexagonal

lattice, it is easy to see that the mean magnetic induction of the system is

(B) = == % (7

where a is the intervortex distance and @, is the magnetic flux associated to each vortex. If
we now apply the flux quatization condition 5 along a suitable path around the vortex, we get
®, = ®,. Then, the magnetic flur associated to one vortex is a single flur quantum.

Knowing the vortex structure, it is easy to get an intuitive picture of the mixed state close

to its boundaries. Near H.1(T), the lattice constant is very large. As one approaches H.2(T),
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Figure 1: Magnetic phase diagrams for (a) low-T, and (b) high-T. superconduc-
tors. In (a), type I and type II superconductors correspond to the left and right
graphs, respectively. In (b), two possible phase diagrams are represented for high-T,
materials.
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Figure 2: The isolated vortex. (a) Spatial representation of the vortex core and the
vorticial supercurrents. (b) Simplified graph of the magnetic induction associated
to the vortex. (c) Simplified graph of the supercurrents associated to the vortex.
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vortices become increasingly crowded, and, very close to Heo(T), o — &: the whole system is
nearly in the normal state.

Insisting in our phenomenological approach, we can get reasonable approximations for B(r)
and Jg(r) for a single vortex by conveniently modifying London equation 3. The results are
qualitatively illustrated in Figure 2b,c assuming cylindrical coordinates. We can also get the
following expression for the electromagnetic energy per unit length of the vortez '7:

32 A

B, = 47W0/\K0(E) (8)

where K 0(%) is the zeroth-order modified Bessel function, that can be approximated by ln(%)
if A > €. We can also estimate the interaction energy per unit length between two paralell vortices
with fields pointing in the same direction (we will call them just paralell vortices)!”:
2 l
0
—— Ko(3) (9)
AmpoA 13

where [ is the intervortex distance . It can be easily seen that the first term of the right

Eyy =2E, —

corresponds to the simple superposition of the individual vortex energies per unit length, so the
last term is the interaction energy. Its minus sign indicates that two paralell vortices repel each
other. If we calculate the force of interaction per unit vortex length through the gradient of E.
in the direction of the interaction, we get:

2
U l

 2mpo A3 KI(E) (10

Jov =
where K (%) is the modified Bessel function of the first order. Again, the minus sign indicates
repulsive interaction.

This interaction can be also visualized coming back to our superfluid analogy. The upper part
of Figure 3a shows the current lines of two superconducting vortices, and the lower part displays
the flow pattern resulting from their superposition (the crosses indicate that the field enters the
paper). Following elementary hydrodynamic arguments, a high pressure region appears between
the vortices (due to the low transversal fluid velocity in that region), while low pressure regions
appear at both sides (related to the high transversal fluid velocity there). This pressure map makes
the vortices to repel each other. In fact, superfluid vortices do exist in helium 18.

Besides the three-dimensional ”straight” ones discussed above, a rich zoology of vortices have
been studied. One of these are the ”doughnut-shaped” or ”circular” vortices firstly discussed

20,21,22,23,24,25 I contrast with

by Tinkham ' and quite intensively re-visited in the nineties
straight ones, circular vortices are unstable at zero applied field because of their tendency to
?shrink out” looking for energy minimization. As in the case of straight vortices, this effect can
be also visualized dynamically: the vorticial doughnut can be sectioned into straight vortices of
infinitesimal length. Then, each infinitesimal vortex attracts its ”anti-paralell” mate at the other
extreme of the corresponding diameter, provoking the shrinking of the doughnut. Other peculiar

types of vortices appear in anisotropic superconductors, where A and £ are different along two
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a

Figure 3: (a) Current superposition which illustrates the origin of the repulsive
interaction between two vortices. (b) Current superposition which illustrates the
origin of the force exerted on a vortex by a transport current.
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perpendicular directions of the crystal. This can produce vortices with ellipsoidal instead of cir-
cular crossection, for example. The ”High Temperature Superconductors” (or "HT¢’s”) discovered

by Bednorz and Miiller in 1986 26 and rapidly enriched and developed by others 27,28,29,30

are
”extreme” anisotropic superconductors. In fact, they can be modelled as arrays of paralell su-
perconducting layers along the ab planes of the structure (called ”CuO planes”) alternating with
non-superconducting layers. When a current flows perpendicular to these layers, the system can
be treated as a stack of Josephson junctions. If a magnetic field is applied perpendicular to the
CuO-planes (H L ab), two-dimensional ”pancake” vortices appear laying in the CuO planes which
eventually form stacks in the direction of the field (Figure 4a) 31:32:33,34_ Tf the field is applied
paralell to the ab planes (H || ab), vortices appear involving both supercurrents along the ab
planes, and Josephson currents perpendicular to the ab planes (Figure 4b) 35,36,37,38,39,40,41
Let us return to simple three-dimensional straight vortices and examine their interaction with
a transport current of density J. Considering that a vortex carries a flux quantum, it can be

shown that it experiences a ”Lorentz-like” force per unit length of the form:

foj = J x ®oiz (11)

where i, is the unit vector in the direction of the vortex magnetic field. Again, our hydrody-
namic analog allows us to visualize the situation. The upper part of Figure 3b displays the straight
current flow lines and the vorticial lines, while the lower part shows their superposition. Then,
high and low pressure regions develop on the bottom and top sides of the vortex, respectively,
causing a force pointing upwards. This, of course, follows the vector product of equation 11 if the
flow is identified with .J and the vortex comes out of the paper. The movement of a vortex caused
by this force is known as fluz flow. As demonstrated by Bardeen and Stephen 42, fluz flow is a
dissipative process because of the existence of a viscous drag per unit length opposed to fz, related
to the scattering of superelectrons at the core boundary when it moves. Phenomenologically, the

magnitude of the drag force can be roughly expressed as

Ip =nvy (12)
where 7 is a drag coefficient which depends on the core details, and v, is the vortex velocity.
Let us integrate now all vortex interactions for the case of a sample in the mixed state submitted

to an external magnetic field. First, the Abrikosov lattice can be thought as the equilibrium result
of the vortex-vortex interactions into the sample —which try to push them off the sample— plus the
interaction between these vortices and the external field (thought as a ”vortex continuum” outside
the sample) —which tries to push the vortices inside-. If we now introduce a transport current
pointing upwards, and we assume that the field comes out of the paper, each vortex will suffer an
extra force of identical magnitude and direction, so the whole lattice will move to the right.

All in all, each vortex in the lattice experiences a net force per unit length of magnitude:

fr =J®g —nvy (13)
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Figure 4: (a) Arrays of pancake vortices associated to a magnetic field applied
perpendicularly to the ”ab planes” of a high-T, superconductor. (b) Josephson
vortex associated to a magnetic field applied paralell to the ”ab planes” of a high-
T, superconductor.
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Note that the (equilibrium) vortex-vortex forces associated to its neighbors cancel out due
to the symmetry of the Abrikosov lattice so they do not appear in 13. A naive conclusion from
this is that the application of a transport current in the mixed state would immediately produce
dissipation, so the critical current —defined as the maximum applied current that a type II su-
perconductors in the mixed state can stand without dissipation— would be zero. This is not the

case in the experiment, as we will see in the next section.

2.2. Vortices in real superconductors

2.2.1. Pinning and J —V curves

Point defects, dislocations, second-phase inclusions and other defects make real superconduc-
tors inhomogeneous, in contrast to ”ideal” superconductors. Let us model an inhomogeneity as a
non-superconducting infinite cylinder of radius £ and consider its interaction with a vortex paralell
to the cylinder.

It is not difficult to see that it is energetically favorable for the vortex core to set just on the
defect, since, in principle, the creation of the normal core in the Meissner sea has an energy cost
which is ”relieved” if the core finds an ”already normal” location. If this is the situation, it is said
that the vortex is pinned by the defect, which is then called pinning center. The energy needed for
extracting a vortex from a pinning center is known as pinning energy. The approximate pinning

energy per unit vortex length can be expressed, in the case of the defect described above, as:

Up = %MOHEWEZ (14)

where H, is the thermodinamical critical field. It should be noted that other inhomogeneities

such as cylindrical defects with radius bigger or smaller than &, spherical defects, or planar ones,

are "less efficient” pinning centers (i.e., have smaller pinning energies). The minimum force needed

to extract a vortex from a pinning center is called pinning force. The pinning force per unit vortex

length for our model defect can be readily estimated from 14 as:
Up
fp= 2%

Of course, the real picture must include the whole Abrikosov lattice, for which we have to

(15)

solve the problem of the summation of pinning forces, which is highly nontrivial in the presence
of random pinning 43. To get rid of this complication, let us assume the very unrealistic situation
of one pinning center per vortex, and equal pinning strengths for all centers. Then, we can define
the critical current density in the mixed state of a type II superconductor with pinning that which
produces a Lorentz-like force strong enough to depin the lattice, i.e.:
fp_ Up

=J.bg = Jo = — =
fp ®o ©= g~ 2¢dyg

This result solves the pretended contradiction at the end of the last section. It also indicates

(16)

that, for type II superconductors with pinning, the total force can be expressed as:
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fr = J®o — nuy — JcPo (17)

and the vortex velocity in the steady state (i.e., fr = 0), as:

1
Uy = E(J — Jo)®o (18)
The application of Faraday’s law indicates that the voltage dissipation due to vortex motion

is proportional to its velocity, so it can be written as:

V= (J—Jc)pssh (19)

where h is the distance between voltage probes in the direction of the transport current, and
prr is called fluz flow resistivity

In conclusion, if we apply an increasing transport current through the extremes of a real type

II superconductor in the mixed state with the field applied perpendicular to the current, and we

measure the voltage drop through a second pair of (inner) contacts, as shown in Figure 5a, we find

a J — V curve like that shown in figure 5b (dotted line).

2.2.2. The critical state

Let us examine how vortices distribute into a type II superconducting slab of infinite dimen-
sions along y and z submitted to a magnetic field —zH, as represented at the right of Figure 6.
As the field exceeds H.i, vortices enter through the surface.

Assuming that each vortex inside the slab is located at a pinning center, it suffers two opposite
effects: a ”magnetic pressure” pushing it into the superconductor, and a pinning force opposite
to its . This is illustrated in the top view of the slab depicted at the upper part of Figure
6 (the slab has been represented as finite along z and also along y for didactical reasons). This
competition provokes a nonuniform distribution of vortices, i.e., the vortex density is highest at the
boundaries, and decreases when we get into the sample. A practical way to represent this situation
is to substitute the effect of the individual vorticial currents by the effective ” macroscopic” currents
resulting from their superposition —as represented in Figure 6- that can be thought of responsible
for the ” Lorentzlike” force acting on the vortex cores.

Charles Bean proposed, back in 1964 44 that the entire system would organize itself in such
a way that those currents would match the critical current density of the superconductor so the

magnetic induction at a given point 7 is given by Ampere’s law:

|V x B{®)| = poJe (20)

It is worth noting that B(F) is a mesoscopic quantity in the sense that it is the average
magnetic induction over many vortices around the position 7, but it is not the thermodynamic
induction averaged over the whole sample. This model is often referred in the literature as the
critical state model. In its original approach, Bean also assumed that J. was independent from

—

the local induction, i.e., from 7. Under these conditions, it is easy to see that the current and
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Figure 5: (a) Illustration of the ”four probe arrangement”. (b) Typical J-V curve
measured with the arrangement depicted in (a) on a low-T, superconductor.
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Figure 6: The critical state in type II superconductors. (a) Top view of a super-
conducting slab submitted to a magnetic field entering the page in which vortices
are represented by crosses. (b) Current profile and (¢) magnetic induction profile
associated to the vortex arrangement depicted in (a). At the right, a simplified
three dimensional representation of the magnetic induction profile into the sample.
H_; has not been neglected, as in the original model 44 .



Vortez avalanches in type II superconductors: the sandpile perspective 87

magnetic field induction of our slab along z are the ones depicted in Figure 6 (note that the gap of
the magnetic induction at the sample’s surface is due to the presence of the London diamagnetic
currents, which are not commonly taken into account in critical state models).

The module in equation 20 implicitly expresses a third hypothesis related to the ”memory” of
the material regarding how the magnetic field was applied. This hypothesis can be expressed like
this: the variations in the external field affect the vortex distribution from the sample boundaries
to its interior, in such a way that different sections of the fluz profile have slopes proportional
either to J. or to —J.. This nontrivial fact is better illustrated through a practical example
as that depicted in the upper part of Figure 6, where the sample has been submitted to a field
increase from zero to a certain H,,, and then to a field removal. Observe that the shielding
capacity of the sample is not given by an increase of the magnitude of the shielding current —since
J = J. everywhere—, but by the volume available for the flow of this current. Then, the maximum
shielding capacity is reached in diagram 3 (see Figure 7), in which the external field has reached
the value H = H* + H_.1, where H* is often called full penetration field. When the external field
starts to diminish, the critical state at the ”inner core” remains unchanged, while the vortices
start to abandon the sample through the boundaries. This finally gives a profile like that depicted
in diagram 8. However, it should be noted that the history can be very different if a lower H,,
value is applied. The thermodynamic magnetization —i.e., that measured in typical magnetometric

experiments— can be calculated, for our geometry, as:

D
gy = B@) _y_ Jo B 1)
1o oD

for the particular magnetic history of Figure 7, the resulting MwvsH diagram is shown on its
lower part.

It is worth noting that Bean’s hypothesis J. # J.(H) is not essential to critical state models.
In fact, different J.(H) dependencies have derived in other models such as the ”Kim model” 45
and the ”exponential model” 6. In our opinion, the critical state model is a major triumph of

physical intuition with a certain ”

engineering” flavor, which was originally conceived without the
knowledge of the existnce of vortices. Even when it has been extensively enriched for decades 47,
the elucidation of the precise dynamics involved in its establishment —specially that related with
vortex avalanches— as a scientific challenge both from the experimental 48:49,50,51,52,53,54,58,55,56,57
and from the theoretical 59,60,61,62,63,64,65,66,67,68,69,70,71,72 points of view. We will discuss in

detail some of these works below.

Flux Creep

The previos decription of the critical state is basically correct at zero Kelvin. At finite tem-
peratures, thermal activation can make the vortices —or vortex bundles— jump out of their pinning
centers, redistributing into the sample in such a way that the Bean’s profile changes in time, and,
consequently, the shielding currents and sample magnetization. This phenomenon —known as fluz

creep— was firstly observed by Kim et al on the relaxation of persistent currents in NbZr tubes
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Figure 7: Magnetization derived from the critical state. Eight magnetic field critical
state profiles corresponding to eigth values of the external field are illustrated at the
upper part of the figure, and the corresponding points in the magnetization curve

are depicted below. H.; has not been neglected, as in the original mode

] 44,
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Figure 8: The upper part illustrates the ”washboard” potential of pinning centers
which provokes vortices to creep when thermally activated (vortex movement is
represented by arrows). The resulting temporal evolution of the magnetic induction
into the superconductor is qualitatively illustrated in the middle, which is connected

to a flur creep measurement with illustrative purposes.



90 E. Altshuler

74 and explained by Anderson and Kim 76 Their model ~widely known as Anderson-Kim model-
assumes that vortices jump off the pinning centers at an average frequency given by the Arrhenius

—U/KT wwere fo is an effective attempt frequency”, k is Boltzmann’s constant, T is

relation f = foe
the temperature, and U is the pinning energy. Since the vortices are submitted to a Lorentz force
in the critical state, it is clear that they basically jump out of the pinning centers in the direction
of the Lorentz-like force. This situation can be represented by ” tilting” the pinning wells in such
a way that vortices ”see” a lower potential barrier in the direction of the Lorentz-like force and a
higher barrier in the opposite. The potential landscape that thermal activation encounters is often
called ”washboard potential”, and is represented in the upper part of Figure 8. In the original
Anderson-Kim approach 7 the pinning energy takes the form U(J) = Ug(1 — J/Jeo) where U
is the pinning potential in the absence of Lorentz-like forces (i.e., no flux gradient) and Jco is
the critical current density at 7= 0K. In the case of low thermal activation (Up >> kT'), these
hypotheses give the following approximate formula for the relaxation of the shielding currents in

the critical state:

T = Jeolt = Trin(0)] (22)

where to ~ 1/ fo. Taking into account equations 20 and 21, a similar decay can be derived, in
a first approximation, for the macroscopic magnetization:
kT t
M = Mpy[1 — Fln(%)] (23)
where My is the initial magnetization. This formula is only valid for ”Fully penetrated sam-
ples”, i.e., flux profiles like those depicted in diagrams 3 or 4, Figure 7.

The temporal relaxation of the magnetization is observed experimentally both in low and in
high T, superconductors. Figure 8 shows, in its middle section, how Bean’s profiles ”relaxes”
in time due to thermally activated vortex jumps from the high to the low flux density regions
in the sample. In Figure 8, a correspondence has been established between this process a fit to
a relaxation experiment on a YBCO crystal performed with a Vibrating Sample Magnetometer
77 with didactical purposes. Although the Anderson-Kim approximation given by formula 23 is
quite accurate for U >> kT —which is a common situation in low-7, supercondcutors—, typical
results for High T, are better described by nonlinear dependencies of the pinning potential such as
U(J) o« [1—(J/Je0)]3/2 T, U(J) o Uo[(J/Je0)* — 1] 7 and U(J) x Ugln(Jeo/J) 8 (observe that
the last two pinning energies diverge as J approaches 0, which can be understood on the basis of
collective pinning theory. In fact, High Temperature superconductors gave new life to flux creep
phenomena, due to the very high creep rates they exhibit, called ”giant flux creep” after Yeshurum
and Malozemoff 81. For an excellent review of the subject, the reader can consult 82.

Finally, it is worth noting that flux creep effects are also present in transport measurements.
For example, in the case of an homogeneous type II superconductors, they are responsible for
the exponential “rounding” of the J-V curves before J.o, as depicted in Figure 5. More complex

phenomena can take place in the case of inhomogeneous superconductors 83.
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Figure 9: Magnetization loop showing fluz jumps taken from °°. (a) Sample in
liquid He bath. (b) Sample in exchange gas.

Flux Jumps

As said before, the attainment of the critical state when ramping up (or down) the applied
magnetic field is far from being well understood. One of the related phenomena that has attracted
most interest due to its great technological relevance for the design of superconducting magnets, is
the appearance of the so called fluz jumps. They have been observed both in low T, 84:85:86,87 and
in High T, superconductors 8888,89,90,91,92,93,94,95,96,97  The current interest in the phenomenon
is illustrated by a very recent study of flux jumps in Nb films which reveals their correlation with
the shape of the magnetization curve 57.

Flux jumps can be defined as thermodynamic catastrophes leading to the full or partial loss
of magnetization in the superconductor. These events are the result of a positive feedback loop:
as the external field is increased, vortices move to “reacommodate” in the sample, provoking heat
dissipation through a Bardeen-Stephen mechanism 42. If the magnetic diffusivity of the material is
higher than the thermal one, this situation produces a temperature rise which, in turn, diminishes
the critical current density, allowing the entrance of extra magnetic flux, which closes the feedback
loop. It is intuitively clear that this process depends on the ”intrinsic” thermal properties of the
sample (specific heat and thermal conductivity), as well as on some ”extrinsic” ones (sample size
and quality of the thermal link with the sample holder). It also depends on how the critical current
density depends on temperature and applied field, and how fast the external field is ramped.

The following conditions can give rise to the appearance of flux jumps: ”big” samples with
poor thermal links with the sample-holder, magnetic fields applied at high ramp rates, strong

temperature dependence of the critical current density, poor thermal conductivity, and low specific
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heat. Taking into account that the specific heat increases with temperature for high temperature
superconductors (see, for example, reference 97), one concludes that very low temperatures are a
nice scenario for flur jumps in HT,s.

As an example, Figure 9 shows magnetization loops with flux jumps measured by Guillot and

coworkers 20

on a ”large” YBCO crystal at 4.2 K with the magnetic field applied along the c-axis
at a ramp rate of 300 Oe/s. Flux jumps are more dramatic for curve (b) (sample cooled with
exchange gas) than for curve (a)(sample immersed in liquid helium), illustrating the effect of the
thermal linkage of the sample. Some of these properties are contained in a stability parameter, 3,
usually defined to characterize thermally-triggered flux jumps 8.

It is important to note that, despite that no systematic special effort has been historically de-
voted to the study of their size and temporal statistics, flux jumps are regarded by most authors as
a ”rather periodic” event 8. Some researchers have even defined a ”frequency of magnetothermal

oscillations” to describe flux jumps for a HT, granular sample 7.

3. Sandpiles: new physics for old phenomena

In general, granular matter behaves differently from solids, liquids or gases. So it is not strange
that some of the brightest minds in Physics of the XVIII and XIX centuries such as Coulomb 99,
Faraday 190 and Reynolds 101 devoted some efforts to the understanding of granular systems.
The strange fact is that the last decade of the XX century has concentrated most of the historical
efforts to approach granular matter from a physical perspective, which has been described in several
reviews 102,103,104,105,106,107,108,109,110,111,112,113,114,115  This is connected, to some extent, with
the use of sandpiles as the paradigm of Self Organized Criticality (SOC), a theory proposed by
Bak and coworkers in 1987 116 to explain a wide spectrum of natural phenomena, specially the so
called ”1/ f” noise in many physical systems... even when the applicability of the paradigm cannot
be fully demonstrated on real sandpiles.

Sandpiles constitute a beautiful mechanical analog of the critical state of type II superconduc-
tors, an idea first sketched by DeGennes in his 1966’ classic book ”Superconductivity of Metals
and Alloys” 9. As sand is added on a flat horizontal surface, the gravitational force tends to bring
the grains down, while the frictional forces between grains prevent its action. The result of this
competition is the building of a pile, characterized by an angle of repose or critical slope, which
basically depends on the effective intergrain friction, and the friction between the grains and the
flat surface. Of course it also depends on gravity, but it is usually a constant in ”conventional”
experiments (however, the rotation of the piles around a vertical axis, their immersion in some
fluid, the tilting of the flat surface on which the pile is built, or an —expensive!- experiment in
the Moon are examples of how to control also the ”gravitational” forces). This situation remainds
us of the description of the critical state of superconductors of section 2.2.2: the grains can be
regarded as the vortices, the role of pinning is played by the intergrain friction, and the Lorentzlike

force is analogous to the gravitational one.

Even when ”everyday” conical sandpiles of ”inverted V” shape are good enough for describing
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the analogies with the critical vortex state, more elaborated piles must be built to resemble typical
increasing-field Bean’s profiles. This was didactically exploited by Campbell and Evetts in 1972
43 to illustrate the influence of the sample shape in the resulting critical state profiles. The top
picture of Figure 10 shows our own version of the sandpile critical profile equivalent to Diagram
4, Figure 7. It was obtained by evenly adding sand, through its two longer edges, to a rectangular
box with open top and bottom faces which represents the superconducting sample: the sand profile
inside the box mimics the critical state into the superconductor. The middle picture in Figure 10
represents the situation when the box is lowered relative to the sand it contains, allowing some of
it to exit through the edges. The sand landscape into the box now resembles diagram 5 of Figure
7. Observe how the finiteness of our box produces critical slopes in two perpendicular directions.

To finish the presentation of the ”static” analogies between sandpiles and the critical state of
superconductors, it should be noted that two-dimensional (2D) sandpiles (we are using this term
to describe conical piles or the ones formed into our sandbox) generally have quite linear profiles,
which nicely adapt to the original Bean critical state model 4. In the case of one-dimensional
(1D) piles (we are using this term to describe piles formed between two vertical plates separated
by the size of one grain), "kink” profiles and ”logarithmic tails” are observed 17, as well as other
complex structures 118, To the author’s knowledge, no 1D-critical state has been studied in the
case of vortices to check if the analogy still works.

Not only static, but also some dynamic properties can be compared between sandpiles and
critical vortex states. One of them is relazation. Jaeger and Nagel, for example, measured in
1989 the temporal evolution of the angle of repose of a slowly driven sandpile Tsubmitted to
vibrations produced by an audio speaker 119, trying to mimic the effect of thermal activation on
the critical state of a superconductor. The angle of repose decayed logarithmically in time within
a range of vibration intensities, as the magnetization does in typical flux creep experiments (see
section 2.2.2). The authors used an analogy of Anderson-Kim’s flux creep model 76 to explain
their results. It is still an open question, though, which property of the loudspeaker vibration
(i-e., amplitude, frequency, mechanical power injected into the system, etc.) should be identified
with thermal activation in vortex creep experiments. Moreover, the analogue of temperature is
not very clear in the case of a sandpile 120 from a formal thermodynamic perspective. In any
case, this example illustrates how the superconducting knowledge can shed some light on granular
phenomena, as we suggested in the second paragraph of this paper. The bottom picture of Figure
10 illustrates the effect of gentle vibrations on the ”decreasing field” sand profile shown in the
middle picture. Observe the decreasing of the slopes, and the "rounding” of the edges, reminescent
of the intermediate diagram of Figure 8 dealing with flux creep in type II superconductors (the
”emergence” of a few big impurities which were originally buried in the sand illustrates one of the
most characteristic phenomena of granular media: the so-called ”Brazil nut seggregation” 121).
But perhaps the most motivating dynamical analogy between sandpiles and the superconduct-

ing critical state was also drafted by DeGennes back in 1966 59: the critical slope of a sandpile to

fThe term is used in the sense that a new grain is added to the pile only after the relaxation
provoked by the previous addition has concluded.
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Figure 10: Sandpile analogues of two different stages of Bean’s critical state model.
Top picture: increasing field. Note similarity with the diagram at the right of Figure
6. Middle picture: decreasing field. Bottom picture: middle profile after ”thermal”
activation.
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which grains are added is manitained through sand avalanches, and it seems reasonable to expect
a similar dynamical behavior for the case of the critical state of a superconductor submitted to an
increasing magnetic field.

In his book ”How Nature Works-the science of Self Organized Criticality” 122, Bak gives a
vivid description of the formation of a sandpile and its avalanche dynamics which can be considered
a refinement of our own one given above. In his description, our sandpile is an open system,
since we will construct the pile by adding grains of sand. The flat surface on which the sand is
added represents an equilibrium state —energy minimum of the system—, but the intergrain friction
prevents the sand from adopting this state. In spite of this, the grains start to form a pile. In
the first stages, they just ”stick” to the grains they have landed on. When the pile gets steeper,
the grains start to topple from the landing locations to lower levels, but still provoking just local
avalanches. The toppling events make the system dissipative, since heat is released due to friction.
There is a moment, though, in which the average number of grains added to the pile matches that
abandoning the pile off the edges, i.e., the system has reached a stationary state. This state is
critical in the sense that it can be only maintained if the different parts of the pile are able to
”communicate” by means of many sized avalanches, which eventually can span the whole pile...a
fact that could not be foretold from the properties of the individual grains! But the key feature that
makes this system a paradigm of Self Organized Criticality is that a critical state ”self-organizes”
in the sense that it is reached with no regard of the details of the specific experiment, such as the
shape of the grains or the roughness of the horizontal surface. At least for the case of theoretical
piles.

In fact, Bak and coworkers demonstrated in 1987 that, for a simple computational model
representing the dynamics of a sandpile the following power laws described the avalanche size

distribution:

P(s)~s™T (24)

and the avalanche lifetime distribution:

Pt) ~ 1 (25)

where s and ¢ are the avalanche sizes and lifetimes, respectively. This means that many-sized
avalanches occurred in the system. Even when we are not going to describe the model in detail for
the sake of brevity, it is worth noting that all the avalanches are considered, and not only those
associated to grains falling off the edge, and that inertial effects are not taken into account. In the
case of 2D piles, Bak and coworkers found 7 & 0.98 and a =~ 0.42, respectively. A remarkable early
attempt to probe the universality of these exponents (i.e., their robustness when the details of the
simulation are changed) was sonly published by Kadanoff and coworkers 123, From his work, one
may infer that 2D sandpile models tend to show SOC behavior, but 1D models do not.

The noise spectrum associated to a lifetime distribution given by equation 25 can be calculated

as S(w) ~ w2+, This led the authors to propose SOC as the dynamical explanation of the ”1/f
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noise” observed in many natural phenomena.

An important issue both in simulations and in real experiments with sandpiles is the problem
of the finiteness of the system. This results in the departure from the power laws in the big
avalanche region, also called ”cutoff’. One could test if a finite system is critical by measuring the
avalanche distribution for different system sizes, and check if the different distributions collapse

into a single curve when applying to the data a critical size scaling ansatz such as:

P(s,L) = L™7 f(s/L™") (26)
where L is the size of the system, f is the scaling function and 8 and v are critical exponents

124

The explicit urging for experiments by Bak and coworkers in 1987 116 managed to bring real
sand into the laboratories. The ”avalanche” started with the ”rotating drum” experiment 119,
which didn’t show power law avalanche distributions — neither resembled too much the original
sandpile model- and continued with the work of Held and coworkers on real sand 2D piles to
which grains were slowly added on top 125. Although finding power-law distributed avalanches in
a certain range, they observed large avalanches causing oscillations of the slope of the pile. As
pointed out in 122, this experiments still had an important difference with the original SOC model:
only the off-the-edge avalanches were recorded. The existence of inertial effects in real sandpiles
was a second major difference with the very simple origial model. After several other experimental

studies 126,127,128,129,130,131

an important experimental improvement was made in 1996 by the ”?Oslo group” 132,133

, when
measuring also the internal avalanches of slowly-driven cuasi-1D ricepiles with the help of a video
camera. For elongated rice grains —i.e., when the frictional inter-grain forces suppressed the inertial
effects— SOC behavior was found.

Figure 11 shows the finite size scaling of their data. The dependence on the grain shape —a
detail of the system— on the SOC behavior, though, indicates that the sandpile model is not as
robust as initially supposed. The off-the-edge avalanche behavior of 1D piles of balls studied by our
group suggest that SOC may also depend on the nature of the base of the piles in such a way that
bases which induce ”ordered” profile doesn’t pass the finite size scaling test, while those with bases
inducing ”disordered” profiles do. Figure 12 displays two extreme cases of this behavior: in the
upper half, bases provoking a smooth pile profile give ”uncollapsable” avalanche size distributions
for three different base lengths. In the lower half, a base provoking a very disordered profile gives
a nice collapse when the ansatz (26) is applied to the avalanche distributions for three different
base lengths. This result is most intriguing, considering that inertial effects are not purposedly
suppressed in our experiment 118,

It is not strange, then, that the next step was to look for SOC on a physical system basically
analogous to sandpiles, but free —at least in a much bigger extent than sandpiles— of inertial effects:

the critical state of type II superconductors.
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Figure 11: (a) Avalanche energy distributions for four base sizes in a ricepile, after
Frette and coworkers 32, (b) Data collapse after applying a finite size scaling ansatz
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Figure 12: Base-dependent avalanche behavior in 1D piles of balls. Upper part: well
ordered piles (left) produced by a conveniently calculated base show avalanche size
distributions (right) which do not collapse when trying finite size scaling. Lower
part: disordered piles associated to disordered bases (left) show good collapse of
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the avalanche size distributions measured for different base lengths (right).
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4. Avalanches in the vortex state

Experiments: present and future

Field et al succeeded in 1995 in the first conscious experiment to directly establish the analogy
between sand and vortex avalanches 2. They used a setup basically similar to those previously
used in references 134,135,136 3 1800 turn pickup coil was coaxially set into a thin-walled tube of
the low temperature superconductor Nbg.47.¢T%0.53w¢ With 6mm of outer diameter, 0.25mm wall
thickness and 3.4 mm length. Following the authors, this geometry guaranteed a close analogy
to [conical] sandpiles. An external magnetic field was applied along z-axis with different ramp
speeds, and the voltage induced at the pickup coil amplified, and recorded by a computer. The
equivalent sandpile analog of this setup would be an horizontal ring with a vertical cylindrical
wall along its outer perimeter, and no wall along the inner one. The sand would be continually
added along the perimeter of the wall from the outside. Then, after establishing a critical profile,
avalanches would start to drop across the inner perimeter of the ring. The basic idea of Field’s
experiment was to detect the equivalent vortex avalanches by means of the pick up coil. Then, if
a ”flux avalanche” of length ! ”drops” inside the cylinder, it will induce a voltage on n turns of
the pick up coil, were n = %N (L being the length of the pick up coil and N the total number of
turns). Then, the detected voltage will be

V= LNdd)actual (27)
L dt

Field and coworkers defined their avalanche size as an ”effective bundle volume” given by

§ % Wactual = / Vit (28)
which is a convenient definition in view of the fact that it was not possible to determine ! from
the available data. In the 1968 experiment by Heiden and Rochlin, a 1 — mm coil was used but,
even in that case, the authors expressed their preoccupation about the existence of a geometrical
factor tending to increase the number of counts due to bundles linking only part of the coil 135.
Figure 13a displays the temporal response of the voltage at the pick up coil for a field window
of 300e centered at 7.55kOe and measured at a sweep rate of 50e/s (figures b and c are horizontal
enlargements of Figure 13a). Following the authors, two contributions can be identified: a flat
background related to a continuous entrance of flux at the rate of the external field ramp, and
pulses related to sudden entrances of fluz bundles, i.e., avalanches. The latter are estimated to
represent 3 percent of the total flux income. Although the authors calculate that the number of
vortices associated to avalanches range from 50 to 5000, this is pervaded by the indetermination
in the bundle length, .
Figure 14a shows the avalanche size distributions reported in 52 For the three fields studied and
50¢/s sweep rate, they can be described by power laws for more than one decade. This situation
is not common in sandpile experiments, where a departure from the pure power-law behavior is

seen 125,128,130 gSome authors interpret this situation as a consequence of the finite size of their
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demonstrates the avalanche behavior of vortices in low-T, tubes.
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systems, which is not a very important handicap in the vortex avalanches here described, since,
following 52, the number of vortices in the wall is typically a million times greater than those
involved in avalanche events). The authors didn’t find the relaxation oscillator behavior observed
by others in 2D sandpiles 125 which is related by them to the lack of inertial effects in vortices.
As mentioned earlier, this situation makes vortex dynamics closer to sandpile models 116:123 The
observed variation of the power law exponents with the applied field in the range from -1.4 to -2.2
is explained in 52 to the different inter-vortex and inter-pin distances attained at the different field
values. This may be considered reminiscent of the influence of grains friction, shape 132 or even of

118 on analogous exponents in the case of sandpile dynamics. Finally, the authors

the type of base
report the power spectrum of the observed avalanches, defined as the squared Fourier transform of
a field sweep similar to that of Figure 14b. While a 1/f behavior is seen for slow ramps, a faster
ones give a Lorentzian peak, and a 1/f2 spectrum at high frequencies. The authors conclude from
this fact that the critical behavior is achieved only very near the marginally stable state, when
the system is slowly driven (typically 50e/s in their experiments). Interestingly enough, Heiden
and Rochlin found ezponential distributions of ”flux jumps” entering their cylinder independently
from the field sweep rate, at least in the range from 10 to 1000e¢/s in their 1968’ pioneering
experiment 135, Even when their ”flux jumps” distributions included a higher number of events
than those presented in figure 14a, the exponential behaviour was found for less than a decade,
and the authors believed that their statistics was still poor for the assessment of the exponential

behavior.

Let us turn back to the problem of the ”avalanching” flux bundle length. One could estimate

this length using the theory of Collective Pinning 137-138,

By treating the vortex lattice plus
random pinning as an elastic system , this theory assumes that vortices elastically deform to

?accommodate” to a distribution of pinning centers within a characteristic pinning length along

Lo~ €4/ ? (29)

where J. and Jg are the measured and the depairing critical current densities, respectively, and

z roughly given by 139,140;

¢ is the coherence length. These vortex segments —or vortex bundle segments, at higher fields—
are the ”objects” which may ”jump” to a neighbor metastable state within Collective Pinning
Theory 139. If we substitute typical values of these parameters for a low-7, superconducting alloy
at temperatures under 5K 43 we get a correlation length of the order of a few microns. When
considering very poorly pinned materials —i.e., very small J.— the correlation length increases to
tenths of a millimeter. Is that the typical awalanche z-axis bundle length in the experiment of

references 52,1357

6 would be a fruitful

In our opinion, revisiting the 1965’ experimental set up of Wischmeyer 13
exersise to get, at least, an approximate response to that question, and, generally speaking, more
insight into Field and coworkers’ experiment. It also consisted in a low-7; cylinder submitted to

an axial magnetic field , but three detection coils were coaxially mounted, as depicted in the lower
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Field et al, 1995
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FIG. 1. The voltage measured on the pickup coil- as the
magnetic field is ramped at 5 G/s. Frame (a) shows a 30 G
segment centered at B = 7.55kG. There are 262144 data
points in this segiment. The voltage trace consists of a series
of many pulses, of widely varying sizes. Each pulsc represents
the sudden influx of a comclated vortex bundie or avalanche
into the tube’s interior. Frames (b) and (c) show successive
magnifications of frame (a) by factors of 10 horizontally. The
area under each pulse determines the number of vortices in the
& ‘ & -': avalanche, as shown for several representative pulses.
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Figure 15: Upper section: set-up by Field and coworkers (left), and resulting pickup
voltage (right) 52. Lower section: set-up by Wischmeyer (left), and resulting volt-
ages at the three pickups involved in the experiment 36 .
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left section of Figure 15. Two of them were located at the inner wall of the cylinder in such a
way that their adjacent ends were a distance d = 2.5mm apart, and the third at its outer wall.
The lower right section of Figure 15 shows measurements obtained by Wischmeyer with his set
up which are roughly equivalent to those depicted in the upper right section of Figure 15, except
that three signals are detected. While the temporal evolution of the voltage of the coils inside and
outside the tube are highly correlated, the signals corresponding to the coils into the cylinder are
poorly correlated.

Winschmeyer results indicate that not only the flux exit through the cylinder wall, but even
the flux entry, may be characterized by peak events!. This can be understood for system-spanning
avalanches —a big exit of vortices off the edge implies a decrease of vortex density at the entry— or
even for avalanches occurring close to the entry boundary. But if it happens to all the avalanches,
it means that some kind of surface barrier prevents the applied field to enter the system smoothly.
The data from 3% is not good enough to discern among these possibilities. They also give a
clue about the length of Field’s avalanching objects: a few millimiters seems to be its upper limit
(definitively 2.5 mm in 136). Let us imagine an experiment with Winschmeyer’s setup in which the
distance d can be diminished until correlation between the pulses detected by the two inner coils is
observed. The corresponding value of d can be interpreted as the mazimum length of the bundles
crossing the wall. A statistical analysis of these correlations for even smaller distances could even
give an idea of the distribution of flux bundles lengths in the z-direction and then, would allow us
to learn more about the fluz sizes of the avalanches. We even can learn how to control the size of
the avalanching objects (related to vortex ”rigidity” 43 by tuning the measuring temperature. Of
course, if expression 30 gives a true estimation of the avalanching bundles’ length, this experiment
would never detect correlation between the outputs of the inner coils, at least for the d values
reasonably affordable in the experiment.

As can be induced from the last paragraph, besides inertia, temperature is another impor-
tant difference between the avalanche behavior of superconductors and of sandpiles. In general,
avalanche experiments on sandpiles are not performed in the presence of mechanical vibrations.
So, a perfectly equivalent experiment on superconductors should be performed at zero Kelvin. Al-
though it is not possible, common sense indicates that the avalanche behavior of superconductors
would approach that of sandpiles only at very low temperatures. But this happens not to be the
case, as demonstrated by the experiments of Zieve et al 53, Nowak et al 4, and Behnia et al 8.

The 1996’s report of Zieve and coworkers 53 used two experimental novelties in the study of
vortex avalanches: state-of-the-art magnetic field sensors, and High T, materials ¥ The former
consisted in the use of photolithographically prepared miniature Hall probes to detect the mag-
netic induction very close to the sample. This technique had been gaining popularity among the

superconducting experimental community in the nineties 142,143,144,145,146,147,148,149

$The first observation of vortex avalanches using a similar setup was reported in 1993 by Seidler and
coworkers 50. We instead discuss in detail reference 3, since it can be regarded as a continuation
of 50 with a heavy accent on the dynamical origin of the avalanches and their sandpile analogy, as
we will see.
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Zieve and coworkers studied untwinned Y Ba>Cu3zO7_ ;s single crystals with a critical temper-
ature of 92 K. They ramped an external field applied parallel to the smaller dimension of the
crystals, and measured the internal avalanches on the samples by mounting them on a miniature
Hall probe with a typical active area of 3 um x 5 um. This resulted in a sensitivity of a single flux
quantum, a dramatic improvement as compared with Field and coworkers’ experiment 52. Another
interesting feature of the micro Hall probes is that they allowed the measurement of ”internal”

32

avalanches —which can be compared with the rice piles experiments reported in 32— in contrast

with the off-the-edge vortex avalanches reported before 52.

Following the authors, the results
were basically similar when the sensor was positioned at different spots on the crystal surface, of
typical dimensions of 1.05 x 0.5 x 0.005mm3. The avalanche dynamics was explored at very low
temperatures (0.1 K — 0.4 K, approximately), and hysteretic effects were studied by ramping the
external magnetic field from zero to around 80 kOe, and then back to zero, at a sweep rate of

70e/s.
Even when Zieve and coworkers’ experiment eventually introduced demagnetization artifacts,
their geometry allowed —in principle— a better control of the z-axis length of the avalanching objects
than in cylinder experiments. Let us estimate L. in their experiment with the help of formula
30. We first calculate the depairing critical current for a typical YBCO crystal with the magnetic
field applied along the c-axis at 0K by substituting £,; = 30 and A, = 3nm in the following
Ginzburg-Landau result 17:
Jo= 20
3V3TpoA2E

which gives Jo ~ 3.6 x 1011 A/cm2. A rough estimate of J. based on the hysteresis loop

(30)

reported in 53 (upper section of Figure 16) and the crystal dimensions also reported in 53 gives
a lower limit for J. of 105A4/ecm?2, a value typically reported for YBCO crystals form magnetic
measurements (see, for example, reference 90). If we substitute this value and Jp in formula
(30), we can estimate an upper limit of of 20um for L., which is bigger than the reported crystal
thickness of 5um. This is a good point in favor of Zieve and coworkers experiment 33. Besides
the crystal thickness, a second relevant length related to vortex dimensionality appears in the
case of any layered superconductor: the interlayer spacing. As pointed out in section 2.1, this
situation provokes the appearance of ”pancake” vortices on the superconducting layers. While for
low enough temperatures and fields these vortices are strongly correlated as 3D strings, (which
can be treated as ”conventional” vortices), above a certain line in the H-T plane the correlation

can be broken, and the 2D pancakes move independently 40,

This complicates the dynamics
for any experiment to detect vortex avalanches on High T, superconductors, unless we make sure
to work in the "vortex lattice” or "vortex glass” regions of the phase diagrams depicted at the
lower section of Figure 1. This condition seems to be also fulfilled in 33 due to their very low

temperature window.

A conceptually simple experiment would help to get rid of any doubt about the dimensionality

of the avalanching objects for any geometry involving a magnetic field perpendicular to a super-
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Figure 16: Top graph: Typical hysteresis loop measured by Zieve and coworkers 33
on a YBCO crystal in which steps corresponding to vortex avalanches are visible.
Intermediate and lower graphs: avalanche sizes distributions derived from the up

and down field ramps in the same experiment °3.
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conducting crystal or foil: it would consist in attaching not one, but a couple of paralell micro Hall
probes situated at the two wide surfaces of the YBCO crystal and analyze the synchronism of the
vortex avalanches measured by either probe. This experiment can be regarded as the ”magnetic rel-
ative” of the six-terminal flux transformer set-ups that has been used for studying different vortex
phase transformations through I-V curves in HT, superconductors 150,151,152,153,154,155,156,157
From the instrumental point of view, it is definitively closer to the experiment by Lee and cowork-

ers 158,

They measured magnetic flux noise at opposite sides of YBCO and BSCCO crystals
and films in the thickness range between 0.075 and 30 microns with two SQUID’s. The authors
concluded that the correlation of vortex motion at both sides of the sample depends on its ther-
momagnetic history and pinning details. Their experiment has two important differences with the
one with micro-Hall probes. Firstly, while the latter is ”local” (10 x 10um?), the former is ”global”
(180 x 180um? SQUID hole area). Secondly, the latter measures the vortex movement correlation

associated to a field ramp, while the former probes the thermally activated flux motion it in time

at zero field.

The upper graph of figure 16 contains some of the most interesting findings reported in 53.

First, vortex avalanches are observed as steps when the magnetic field is ramped up and down.
Second, they appear at a certain field value, Hyp, and disappear at a different value, H 44,5, which
are independent from the field ramp rate. Hg,q,, showed to be particularly stable against variations
of the temperature and field ramp histories. The results of several well conceived experiments made
the authors reach the conclusion that the difference between Huyp and Hgoyp ,i.e., between the
ramp directions, is an intrinsic property of the system than cannot be ”suppressed” by changing
the experimental conditions. The second major finding of Zieve and coworkers is that the avalanche
size distributions in both ramp directions are not power-laws, but sharply peaked, and centered
around 750 flux quanta (see the two lower graphs in Figure 16). This doesn’t fit into the SOC

scheme.

These distributions could be expected from thermally triggered flux jumps, as described in
section 2.2.2. However, the authors dissipate such doubts with several arguments. For instance,
their avalanches are observed in the "high” field region, while thermally triggered flux jumps are
typical of the ”low” field region, and their steps never reach the line B = H —i.e., the magnetization
never vanishes— which constitutes a common ”catastrophe” in thermally triggered flux jumps. They

also do not depend too much on field rates, as expected for thermal instabilities.

Then, the authors conclude that their avalanches have a true dynamic origin, and try to give an
intuitive picture of the observed hysteretical behavior through the sandpile analogy. As described
in section 3, the mechanical process to fill a box with sand to get the ”V-shaped” Bean’s profile
is different form that required to resemble the decreasing-field Bean’s profile: while in the former,
sand should be added through the boundaries at the higher positions of the pile, in the latter it
must be removed from the lowest positions. These two processes are quite different, since the lower

positions support much of the overall pile weight, so sand removal may trigger avalanches easier
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(corresponding to the lower values of Hgsq,n as compared to Hyp) § Zieve and coworkers extend the
analogy to account also for the peaked avalanche distributions observed: in their opinion, vortex
mass renormalization 140 takes place at the very low temperatures of their experiments, making
vortex inertial effects significant. This brings closer their vortex system to sandpiles, which, as
stated in section 3, have been found to show peaked avalanche size distributions due to inertial
effects 125128,

Nowak et al % performed a variation of Field and coworkers’ experiment, but substituting
the superconducting cylinder by Nb rings with inner and outer diameters of 15um and 98um,
respectively, and 0.5um-thickness. They used the same system as 33 for avalanche detection: one
3um X bum-area Hall probe was positioned at the center of the hole, and a second one, 22um off-
center and directly above the ring. The sensitivity of these probes were 10®o and ®¢, respectively.
They allowed the measurement of the total flux involved in avalanches crossing the perimeter of
the hole, and also those occurring a certain position above the superconducting ring (internal
avalanches). This geometry might allow to approach the vorticial analogy to a typical sandpile,
i.e., that excited by adding particles at the top of the pile. To do it, we just need to increase
the magnetic field only at the hole. This can be achieved by using a miniature split ring-solenoid
fitting closely over the specimen at the hole region. Internal and off-the-edge avalanches could be
measured by placing Hall probes on the ring and at its outer perimeter, respectively.

Nowak and coworker’s geometry allows —in principle— to control of the z-axis length of the
”avalanching” objects even better than in the case of 53, since no layered structure is present in
Nb. Let us estimate L. in this experiment. We first calculate the depairing critical current for pure
Nb at 0K by substituting £ = 40nm and A = 85nm 4! in 31, which gives Jo ~ 3.4 x 107A/cm2.
Substituting in formula (30) this and the value J. = 5 x 10'94/m? reported in 3¢ for their Nb
films, gives L. & 0.1um. Although this is twice the film thickness use for fabricating the rings,
this proportion might be even lower, since Jo may be smaller than that calculated from 31, due
to impurities in Nb 160, Then, a ”worse” Nb material from the point of view of pinning strength
would be convenient in this experiment to guarantee ”avalanching objects” of the same length
of the film thickness. As a matter of fact, this can be easily achieved for thin-film amorphous
superconductors 161,

Figure 17 shows some of the basic findings of Nowak and coworkers 54. As in the case of 53,
steps appear in the B — H plane, indicating the occurrence of avalanches at different temperatures
—always higher than those studied in >3-, Interestingly enough, no trace of Hyp and Hggqr, fields

similar to those reported in 53

is observed. This might be related to the much lower field values
in the present experiment. The most interesting fact observed by Nowak and coworkers is the
dramatic dependence of their avalanche size distributions with temperature, as summarized in

Figure 18. Below T'/T, > 0.35, the avalanche size distribution follows a decreasing exponential,

§To the author’s knowledge, no experiment or has been conducted to check out such as important
hysteretical behavior in sandpiles. Although not aimed at exploring hysteresis, recent simulations
of Manna and Khakdhar 159 indicate power-law avalanche distributions for internal avalanches in
granular media where the grains are remowved from the bottom of a 1D pile. No inertial effects
were considered.
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Figure 17: Hysteresis loops measured by Nowak and coworkers 5% on a Nb ring
(depicted as an inset in the top graph) in which T-dependent steps representing
vortex avalanches are visible (t = T'/T,).
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Figure 18: Representation of the avalanche statistics as measured by Nowak and
coworkers, extracted from % .

as reported in 135 and the avalanches are not ”complete” (they don’t reach the H — B line). For
0.2 < T/T, < 0.3, however, it is sharply peaked around 2000®¢. The corresponding avalanches are
system-spanning and ”complete”, which suggests thermally-triggered flux jumps. For 0.2 > T'/T,
a broad avalanche size distribution is recovered, but it is not exponential. These observations
remained the same within a ramp rate window from 2 mOe/s to 20 Oe/s, indicating that the
experiments took place in the slowly driven regime.

The authors explain their data on the basis of a thermally triggered mechanism typical of flux
jumps. They even define a thermal stability parameter (see section 2.2.2), for their ring geometry,
and argue that the broad distribution of avalanches they observe in the range 0.3 < T'/T, < 0.4
—and reported by others 52:135_ is related to a regime in which that parameter is marginally greater
than 1. This contrasts with a SOC dynamic mechanism for vortex avalanches.

To the author’s knowledge, the last experimental study of non-catastrophic vortex avalanches
in slowly ramped external fields is the 1999’ one by Behnia and coworkers 5. Pulling even further
the Hall micro-probe technique, these authors attempted to study in detail the spatial and temporal
correlations of internal vortex avalanches in the x-y plane of a a 20um — thick polycrystalline Nb
film of lateral 0.8 x 0.8mm2. The measurements were performed using a row of 8 equally spaced
Hall micro-probes of 20 x 5um? area each, able to detect 0.16®¢. Each row was 0.35 mm long, lying

on the film perpendicularly to one of its edges, in such a way that the sensor closest to the film
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Figure 19: Avalanche size distributions (left) and spatiotemporal correlations of
avalanches (right) on a Nb foil submitted to an increasing magnetic field 8.

edge was 0.2 mm away from it (see the upper section of Figure 19 for an approximate sketch of the
sensors arrangement). As in previous cases, let us estimate the collective creep bundle size in this
experiment, based on the available data. Considering formula (31) and the values £ = 60nm and
)\ = 150nm as extracted from the values of the critical fields 162, we obtain Jy ~ 7 x 106 A/cm?.
A rough estimation of the critical current density at H = 15000e based on the application of
Bean’s model to the B — H loop reported by the authors gives a lower limit of J. & 5 x 104A/cm2.
When these values are substituted in formula (30), we get an approximate upper limit for L. of
0.7um, which is quite smaller than the film thickness. So, the ”rigidity” of vortices measured in the
experiment is not guaranteed. After checking the establishment of the Bean’s critical state profile
at T' = 4.8 K —something difficult to assess in previous experiments due to the small amount of Hall
sensors—, Behnia and coworkers ramped up the external field at 1.10e/s starting at B = 0.15T'.
They obtained, at each sensor, a B — H pattern with steps qualitatively similar to those reported
in 53 and %4, which indicated the presence of flux avalanches. The authors estimated that 40 to
70 % of the flur increase into the sample was in the form of avalanches and not fluidlike, which

contrast with the 3 % reported by Field et al in 1995 52,

At the lower left of Figure 19, the avalanche size statistics is displayed for one sensor (black
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dots) and for the output of a whole row (columns). Both distributions follow a power law for less
than a decade with a critical exponent of -2.1, within the range of those reported in 52, with the
biggest avalanches comprising around 5 vortices under one probe area. However, the differences
in the zone of big avalanches suggest that not all the avalanches extend through the whole length
of the row (if they did, the two outputs would be exactly the same). Note that measuring the
output of an entire row of sensors introduces an ”artifact” qualitatively similar, within the x-y
plane, to that present in reference 52 due to the extension of their pick up coil along z-axis. To
further explore this finding, Behnia and coworkers analyze the spatio-temporal correlations of the
avalanches measured on two micro-probes located 50um apart, resulting in the B — H diagram at
the lower right of Figure 19. The avalanches at the sensor closer to the sample boundary generally
occur first, and then propagate ”down-the-hill” to the second sensor. They also observed that
avalanches generally increased when moving in the same direction. These two facts are reflected
in the right-left and up-down assymetry in the inset of the B — H graph, respectively. All this

findings suggest a SOC picture of the observed avalanches.

Under T' = 3.4K, however, a completely different picture arises: catastrophic, hysteretic,
avalanches with peaked size distributions are observed, in agreement with the work of Zieve and

coworkers 53.

As them, Behnia and coworkers claim that such avalanches are not thermally
triggered, since they demonstrated to be insensitive to the field ramp speed. They also present the
H — T phase diagram of their sample —a very valuable data not often reported by other authors—,
and remark that the catastrophic avalanches occur in a low temperature region close to Hc1, and

far from Hea.

The authors suggest that, close to H.1, the critical state is not well established, so, as reported
for sandpiles, the occurrence of ”quasi-periodical” avalanches can be related to the ”absence of a
single critical slope”. This contrasts with our own results in 1D piles (see Figure 12) and the ”Oslo
model” in which SOC behavior is observed only when ”dynamically disordered” pile profiles are

attained 118,132,133

A quite different approach to the measurement of vortex avalanches was used by Aegerter in
1998 36 instead of ramping the exsternal field —as in the cases previously discussed— the author
measures flux avalanches during the thermally activated time relazation of the magnetization at
different temperatures. At each temperature, the author measures the global magnetization of
a Bi2Sr2CaCu20g crystal during a 24-hour period by means of a SQUID magnetometer, after
applying a certain magnetic field to the sample in zero-field-cooling conditions. However, neither
the value of the applied field nor the relative orientation of the crystal are reported in reference 56.
The avalanches appeared as spikes in the magnetization versus time characteristics. Even when
the avalanche dynamics studied in this ”thermally driven” experiment cannot be compared with

those reported in ”field-driven” conditions 135,52,53,54,58

in a straightforward fashion, it is worth
pointing out the basic observations accounted by the author: the avalanche size distributions are
described by power loaws at ”low” temperatures (0.061;) and at long relazation times, while they

are fitted by exponential laws at "high” temperatures (0.81; ), and at short relazation times. When
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Ref Geom. Material  Sensor  Awalanche Trange  H range Avalanche
type [kOe] distribution

[135] hollow Pb-In pickup off-edge 0.6 T¢ 0.550 - exponential
(1968)  cylinder coil 0.850

[52] hollow Nb-Ti pickup off-edge 0.3 T, 2.25 - power law
(1995) cylinder coil 7.55 (slow ramps)

[53] planar YBCO Hall internal T< 0-80 peaked
(1996) crystal probe 0.01 T,

[54] ring Nb Hall off-edge 0.15 -500 - peaked/pow. law
(1997) film probes & internal  1.12 T.- 500 (dep. on T)

[56] planar BSCCO  SQUID off-edge 0.06- ? exp/pow. law
(1998) crystal 0.8T. (dep. on T & t)

[58] planar Nb Hall internal 0.52 T¢ 1.5 peaked/pow. law
(1999) film probes (dep. on H & T)

Table 1: Basic features and results of experiments on vortex avalanches discussed
in the text, as extracted directly or indirectly from the respective references. Most
of the experiments were performed by ramping the external field in the range from
0.002 to 100 Oe/s, except for [56], in which the field was not ramped.

power laws arise, the author obtains an exponent of 2 in their avalanche distributions, very similar
to that reported in 52 from global, field-driven experiments at 0.37.. An interesting additon to
Aegerter’s experiments would be to detect ”thermally activated” avalanches in the temperature
region T' < 0.017¢ and check if the peaked avalanche distributions reported by Zieve and coworkers
in their field-driven experiments on other high-T,, YBCO, appear here.

Some of the experiemntal details and results reported in the avalanche-detection experiments
discussed above, have been summarized in Table 1. Although their contents might be partially
unnacurate —due to lack of space and difficulties in finding data in some of the articles cited— it
brings a necessary global idea of the current ”state of the art” in the subject. It makes clear, for
example, that many voids have to be filled up to get a complete picture of the avalanche dynamics
in superconductors. It may be suggested, for example, that the micro-Hall probe technique should
be used to explore more thoroughly the H-T diagram of the different materials in the search of
avalanche dynamics. Even when most of the cited papers are fine pieces of experimental work,
they do not spot the detected dynamic regimes in the context of the H-T diagram for their specific
sample. On the other hand, some experimental details not reflected directly in Table 1 also
present voids. For example, the time windows explored by the different authors for estabishing
their avalanche size distribution data roughly vary form a hundred seconds in 52 and 52 to several

hours in %3 and 54.

Doughnut-vortex avalanches

Let us examine the experiment depicted in Figure 20: a straight current-carrying wire is
located along the symmetry axis of a type II superconducting hollow cylinder with pinning. Due
to the azimuthal magnetic field created by the wire, an asymmetric critical state is established on

the crossection of the cylindrical shell associated to a distribution of doughnut-shaped vortices like
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Figure 20: Type II superconducting hollow cylinder with a coaxial current-carrying
wire: critical state of ”doughnut-shaped” vortices 2° .

those described in section 2.1 25. This asymetry is connected to the fact that the wire-associated
?external” field in which the cylinder wall is embedded is higher at the inner wall, and lower at

the outer wall. Let us now suppose that we slowly increase the current on the wire.

By analogy with experiments and simulations on slab geometry in which the external field is
ramped, vortex avalanches are likely to occur. In principle, their fingerprint would be spikes in the
longitudinal voltage of the cylinder, which would eventually resemble those depicted in Figure 13.
It doesn’t seem to exist a trivial ”sandpile” analogy of this experiment in which the avalanching
objects change their length —and, following formula 8, their electromagnetic energy— as they move.

Is this system expected to show SOC?.

A final divertimento: ”Magnetic” and ”Superconducting” earthquakes

Earthquakes are clearly one of the natural catastrophes calling for a sound physical model able
to yield predictions as accurate as possible. Even though earthquakes are enormously complex
phenomena involving the dynamics of disparate elements ranging from the Earth’s crust to human
constructions, there is one fact that makes it reasonable to tackle the problem: earthquake intensity
distributions measured along many years in different regions follow a simple power law known as
Gutenberg-Richter law 163,

Burridge and Knopoff % introduced a spring-block model for earthquakes basically similar to

that represented in Figure 21. In the model, a tectonic fault is represented by a two-dimensional
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Figure 21: Block-spring model for earthquakes 122.

array of blocks resting on a surface with friction. The blocks are interconnected by coil springs
along the y-axis, and each one is linked to a moving plate through leaf springs, which account
for the forces on the material near the fault due to tectonic plate motion. When the plate is
moved along x-axis, no block moves until, at least, one of them receives a force from its leaf spring
higher than a certain threshold. When this happens, the block slips in the x-direction, which
increases the forces on the neighboring blocks via the coil springs, which eventually induces a
”chain reaction” resulting in the displacement of several blocks. In the model, this avalanche-like
event is identified as an earthquake, whose intensity can be defined as the total displacement
of the blocks. Simulations show that the distribution of the avalanches in such model follows a
power law, even when dissipation is considered (i.e., part of the elastic force is not transmitted
to the neighboring blocks). This has been interpreted by many authors as a demonstration that
earthquakes display SOC behavior 165,166,167,168,122 " Tiyen more, the finite size scaling analysis
of this model indicates that it belongs to the same universality class exhibited by one-dimensional

granular piles 132 and interface deppining 16°.

Similar results have been found when the model
was translated into a mechanical experiment 70, Interestingly enough, when inertial effects are
considered (i.e., the slips events are not instantaneous), simulations indicated that power laws are
only obtained for ”small” earthquakes, but more or less periodic ”big” earthquakes take place
171 which resembles better the rotating drum experiments with sand of reference '° than real

earthquakes.

A curious variation of the earthquake model would be to substitute the springs by magnetic
forces. This can be achieved by means of the experimental setup depicted in Figure 22: a regular
set ”primary” permanent magnets are stuck to the upper face of a nonmagnetic slab which rests
on a second plate. A second set of magnets is situated on the lower face of the latter, in such

a way that they are kept in position through the attractive interaction with the ”primary” set
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of magnets along the x-axis (the magnetic moments of both layers of magnets are in the same
direction). Besides this interaction, the ”secondary” magnets experience a repulsive magnetic
interaction among them in the x-y plane. These interactions along z-axis and along the x-y plane
play the role of the forces exerted by the leaf and coil springs of the earthquake model depicted
in Figure 21 (although a perfect analogue would require coil springs also along x). The difference
would basically rely in the details of the forces involved, particularly their long range nature,
which contrasts with the short range commonly assumed. Now, we start to move the upper plate.
Since the ”secondary” magnets are submitted to a frictional force against the lower acrylic plate,
avalanches can appear when the magnetic force exerted on one of these magnets surpasses the
frictional threshold. The present author has performed some preliminary measurements with a
very limited amount of magnets in this schedule, and slip events spanning two orders of magnitude
in are easily achieved. The displacements of the secondary magnets can be measured by analyzing
images recorded by a CCD camera or, even better, using highly-linear, contactless capacitive
sensors. Would this system show SOC, or it will be suppressed by the nature of the magnetic

forces and the strong inertia of the magnets?

‘We have purposely represented in Figure 22 not a squared, but an hexagonal arrangement
of ”primary” magnets. In fact, this set-up has many points of contact with a system of super-
conducting vortices piercing a pair of paralell superconducting films separated by an insulating
layer, a system studied by Ivar Giaever in his elegant 1966’ ”flux transformer” experiments 172,
in which a transport current is applied to the ”primary” superconducting film, and a the voltage
drop is measured along the same direction on the ”secondary” film. In this system, the field- and
temperature-dependent vortex-vortex interactions in the x-y plane described by formula (10) would
match the coil springs in the earthquake model, while the elastic moduli for the triangular vortex
lattice caa (tilt) and cgg (shear) — which are also functions of B and 7" 173:174,43,140 _ yould account
for the leaf spring action. This means that a careful tuning of the applied field and temperature
would allow to scan a continuum of ”spring” characteristics. In our experiment, the transport
current on the ”primary” film would be ramped up at a certain rate, and the time integral of the
voltage measured on the ”secondary” film would give the eventual flux-avalanche behavior, in a
way somewhat similar to that of the 1995’ experiment by Field et al 32. A computational model

for this experiment will be drafted in the next section.

Our magnet experiment can be further enriched by including several layers of nonmagnetic
plates with ”secondary” magnets, and measure the resulting avalanches, for example, at the bot-
tom layer. This would mimic the situation of a high 7. crystal with a magnetic field applied
perpendicular to the ab planes of the structure: the magnets correspond to the ” pancake” vortices
introduced in section 2.1, provided we were working in a region of the H-V phase diagram were the
pancake vortices have lost their Josephson coupling, and only the magnetic interaction remains. It
should be underlined, though, that a more complex elastic theory of the flux line lattice is needed

to describe such system 40,

Modern techniques allowing the fabrication of normal metal, semiconductor and supercon-
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Figure 22: ”Magnetic earthquakes”: a variation of the mechanical earthquake model

depicted in Figure 20 proposed by the author.
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ductor micro- and nano-structures invite to expand further our analogies. For example, two-
dimensional arrangements of islands of Al in the normal state interconnected by tunnelling junc-
tions in the x-y plane and capacitively coupled between them and to a ground plane 175,176,177
give another reasonably good analogy with the earthquake model. Typical experiments involving
these arrangements is the measure of I-V curves when the arrangement is excited by a voltage,
provoking transport of charge from island to island, through tunnelling effects 175. In this system,
vortices may correspond to charges, quenched disorder (pinning) to random offset charges in the
islands, and vortex interactions, to the rules governing the tunnelling process. It must be said,
however, that there is an upper limit for the islands charges, differently from the vortex scenario,

where the pinning strength is virtually unbounded 178.

A rough approximation of our vorticial
earthquake experiment would be to apply a voltage to the ground plane (i.e., a pinningless medium

in the vorticial system), and measure the ”charge avalanches” at the islands arrangement.

5. Critical State and Cellular Automata

Computer simulations have become more and more popular in contemporary science. Hence,
it is not surprising that the critical state has been extensively studied by means of MonteCarlo
simulations (particularly in connection to flux creep phenomena, but also with avalanche dynam-
ics) 17 and molecular dynamics simulations, MD 0.5, The latter is potentially the ultimate
weapon in vortex-state simulations, since it consists in following the dynamics of any set of inter-
acting particles —vortices in our case— by integrating their equations of motion '80. However, MD
simulations have the important handicap that they usually require strong computational tools if
big systems are to be tackled. Cellular automata models (CA), on the other hand, are simpler
computational models that can grasp the physical essence of many physical situations with less
computer power demand ¥ A CA is a dynamical system where space, time and the states of the
system are discrete. In the CA, each cell of a regular spatial lattice can have only one of a finite
number of states, which is updated according to a local rule, i.e., depending only of the state of
the cell and their neighbors in the previous time step.

‘We are going in this section to concentrate in a particular cellular automaton model introduced
by Bassler and Paczuski in 1998 68 which simplicity allows the exploration of several features of
the critical state, specially its avalanche behavior. The model represents the vortex dynamics
on a two-dimensional simple hexagonal lattice. A lattice site situated at = has a pinning energy
randomly chosen to be Vji,(x) = p with probability g, and Vp,(z) = 0 with probability 1 — g.
Vortices are only allowed to exist at the lattice sites, each of which can contain m(z) vortices.
The upper section of Figure 23 shows an example accounting for a few lattice sites, which are
represented by open circles, while the dots represent vortices. Vortices at site z of the figure can

move to site y only if the ”force” defined as

TBak and coworkers’ model for SOC mentioned in section 3 was a CA!



Vortezx avalanches in type II superconductors: the sandpile perspective 119

20

Average Vortex Density
) o

(441

Row

Figure 23: Tllustration of the cellular automaton network proposed by Bassler and
Paczuski %8 to simulate the critical state of type II superconductors. The open
circles represent the network sites, and the black dots, vortices. Lower section: An
example of critical state profiles for increasing magnetic field obtained through the

cellular automaton.
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Fpsy = szn(y) - prn(x) +[m(z) — m(y) — 1]
+ rim(zl) + m(z2) — m(yl) — m(y2)] (31)

is greater than zero. In the above expression, r is a measure of the effect of the z and y
sites nearest neighbors, namely z1, 22, y1 and y2 (In the specific example of Figure 21, assuming
Vpin(€) = Vpin(y) and r = 0.2, we obtain F, = 1 ). All sites are updated in paralell, and only
one vortex from a particular site is allowed to move at each update. Then, if Fz—y > 0, one
vortex jumps from z to y. If two directions are unstable when calculating the force for a given z,
it jumps to one of them selected at random.

The increase of the external magnetic field is represented by the random addition of vortices
to the system through its left boundary. Periodic boundary conditions are applied to the top and
bottom of the lattice. The vortices reaching the right boundary are removed (they ”fall out” of
the system), and no vortices are allowed to abandon it through the left boundary.

Note that the different forces acting on vortices are not calculated through equations (14)-(17)
—as expected from a MD approach—. Instead, they are represented by simple CA rules chosen
with physical intuition. For example, the first two terms at the right hand of the force given by
expression 31 indicate that the vortices tend to move from weak to strong pinning centers, while
the rest of the terms indicate that they tend to move in the direction of the (local) flux gradient
due to intervortex repulsion. A more subtle matter is to discuss if the model is able to deal with
the viscous force associated to vortex movement, introduced in section 2. In fact, the intrinsic
discreteness of the CA implies eventual vortex ”stops” at a few ”pinnningless” sites in its way
from one pinning center to the next one: in my opinion, this somehow mimics the finite velocity
of vortices during fluz flow.

The lower part of Figure 23 displays a typical sequence of vortex density profiles for increasing
values of the external field obtained through the model described. A relatively small density of
sites has been selected in the example to illustrate the vortex density fluctuations along the profile,
which reproduces accurately the predictions of Bean’s critical state model, illustrated in Figures
6 and 7.

But the most exciting use of the CA model is the possibility to examine how the critical state is
reached. For that purpose, Bassler and Paczuski excited their CA by adding a vortex to a random
site at the left boundary of the system, resembling an increasing magnetic field in the outside. The
lattice sites were then continually updated until no more unstable sites persisted. This process was
called a vortex avalanche. The avalanche size was defined as the number of topplings following a
vortex addition, while the avalanche duration was defined as the number of updatings necessary
to complete one avalanche. Once the lattice was again stable, a new vortex was added.

Figure 24a shows the times series of vortices falling off the right edge of an approximately
squared system of L = 200 size, and parameters r = 0.1, p = 5 and ¢ = 0.1, which qualitatively
resembles the result of the 1995’ experiment by Field et al 52 represented in Figure 13, although

one must be aware of the fact that fluz avalanches are not directly shown there. The following finite
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10 a

Figure 24: Top graph: temporal series of vortex avalanches reported by Bassler
and Paczuski using the cellular automaton illustrated in Figure 23 . Intermediate
and lower graphs: data collapse after finite size scaling of the avalanche sizes and
lifetimes distributions by the same authors.
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size scaling ansazt was use to analyze the avalanche sizes and durations distributions, respectively

for systems of sizes L = 60, L = 200 and L = 600.

P(s,L) = 57" f(s/L") (32)

P(t, L) =t~ f(t/L?) (33)

The data collapse —illustrated in Figure 24b,c— resulted in critical exponents 7 = 1.63 £ 0.02,
D =274+0.1, v =2.13+£0.08 and z = 1.5+ 0.1. (note that no finite size scaling was necessary in
52 due to the huge size of the real vortex system). Similar results were obtained for a wide range of
simulational parameters, indicating the robustness of the system, and SOC behavior. It must be
pointed out that, even when many features between the experiment reported in 2 and these CA
simulations are coherent, the model differs from the experiment in treating the vortices as pointlike
particles, while real vortices are objects of unknown dimensionality, as previously discussed.

Bassler and Paczuski’s CA has enjoyed a rapid popularity among the superconducting simu-
lational community. Cruz and coworkers, for example 7! have applied the model to systems with
a periodic distribution of pinning centers (which can be achieved experimentally with state-of-

181} finding power law distributions of avalanche sizes and

the-art ion bombardment techniques
durations, as well as a new universality class for strong and dense periodic distributions of pinning
centers.

Mohler and Stroud, on the other hand, used the CA to calculate the flux noise of a sys-
tem analogous to that reported in 52, concluding that slowly applied fields produce ”1/f* noise,
while fast field ramps provoke a peak in the noise spectrum, in qualitative agreement with some
experimental findings.

The experimentally inescapable problem of how thermal activation of vortices affect the
avalanche dynamics has been tackled by Mulet and coworkers 73 by modifying the original CA
with a MonteCarlo-type algorithm, which differs from the previous analytical 4%:62:65 and MD 66
approaches to the subject. The central idea of Mulet and coworkers’ model is that, for vortices in
sites where Fz—4 < 0, there is still the possibility of motion with a ”thermal” probability given
by Py sy e~ UG)/kT | where U(j) can follow different pinning models, and j is the local critical
current density, which is proportional to the local gradient of the vortex density, as described in
section 2.2.2. In the simulation, vortices are added as in %8 until the critical state is established,
and then the system is allowed to relax via thermal activation. The simulations indicate power-
distributed avalanches with critical exponents related to those found by Bassler and Paczuski in
their original paper 8. The results of these simulations are partially coherent with the relaxation
experiments reported in reference 56. Both works agree in that power laws are lost as the tem-

73

perature increase but, while in many-sized avalanches are predicted from the first moments

of the relaxation process, they are observed in reference 56 only at large relaxation times. The

73

theoretical prediction in comes form the fact that, in the model, a ”perfect” critical state is

assumed at ¢t = 0. However, it must be stressed that Aegerter’s experiments are performed with
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a SQUID 58, 50 only ”off-the-edge” avalanches can be detected. On the other hand, its resolution

is relatively small —as the author himself states.

A more straightforward application of Bassler-Paczuski’s CA is the study of the effect of a
transport current in the avalanche dynamics of the critical state. A basic approach to the subject
is to assume that the effect of a transport current applied perpendicularly to the magnetic field
on a thin slab (i.e., entering into the page in diagram 3 of Figure 7) is to ”tilt” the field boundary
conditions relative to the ones corresponding to the fully penetrated critical state at zero transport
current 8. Then , the effect of the transport current increase would be to add or release vortices

asymetrically at the boundaries, and let the CA rules to ”take charge” of the dynamics 182.

Curiously enough, most of the molecular dynamics simulations of vortices in the presence of a
transport current assume a uniform Lorentzlike force acting on each vortex. The sandpile model
for this would be the ”rotating drum” experiment, in which a box of sand is slowly tilted 119.
This is not the approach followed in the CA model described in the last paragraph. In fact, its
sandpile analogue would be to lower, for example, the right vertical wall of the box containing the
”V” sandpile depicted in Figure 10a, as new sand is added at the left wall (which height would be

increased to support the increasing left shoulder of the pile).

Finally, I will suggest some further qualitative ideas that may be implemented with the Bassler-
Paczuski’s CA, and may help the understanding of some properties of the critical state of type II

superconductors.

A simple modification of the algorithm would be to establish a rule for the diminishing of the
pinning potential as the vortex number at a given site increases, in order to resemble the field
dependence of the critical current density in real superconductors. This should produce curved
flux profiles, as those obtained, for example, from Kim’s critical state model 45. It would also

eventually destroy SOC dynamics.

A less trivial modification of the algorithm would allow simulation of flux jumps. As we have
seen above, they constitute an important experimental issue to rule out when the objective is to
measure only the ”dynamically driven” flux avalanches 53-54:58  Including in the CA algorithm
both kinds of flux avalanches may be useful to have an idea of their interaction. One qualitative
approach of flux jumps could be to establish a maximum local rate of vortex topplings in the
original CA algorithm (i.e., a maximum dissipation due to vortex movements that the sample can
stand without increasing their temperature). If this maximum is reached, the pinning strengths of
that region would be lowered by a certain factor (i.e., as the temperature increases due to excess
flux motion, the local critical current density decreases). This would imply a ”catastrophic”
enter of flux into the sample (i.e., a flux jump). The values of the different parameters of the
new automaton would represent those relevant to flux jumps: specific heat, thermal conduction,
temperature dependence of the critical current density, etc. Observe that this idea does not imply

a MC-flavored simulation of thermal activation like in 3.

Although surely much more computing-time consuming, some ideas can be suggested for

approaching the dimensionality of real vortices with the use of Bassler-Paczuski CA. It is perhaps
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a variation of the ”superconducting-earthquake” experiment proposed in the last section the one
most easily reproducible with the CA. The key modification would be to use two paralell lattices
instead of one, with the external field applied perpendicular to the lattices. Then, the force formula
(32) should be modified to account for the interaction between vortices —or vortex sections— located
on different lattices. One simple possibility is to add a term expressing the "preference” of vortices
to occupy sites on one network directly above (or below) occupied sites in the paralell plate. A

first step to implement such idea is to define the forces at the upper and lower networks, as:

Finy = Voin(¥)" — Voin(2)* + [m(z)" — m(y)* —1]
+ r[m(z1)* + m(22)* — m(yl)* —m(y2)*] — em(z)’ (34)
Fioy = Voin(®' —Vpin(2) +m(z)' —m(y) —1]
+ rim(z1)! + m(22)! — m(y1)" — m(y2)'] - em(z)* (35)

” and ?1”

where the superscripts ”u refer to the upper and lower networks, respectively, and ¢
is the inter-network or inter-layer coupling constant. Firstly, we would examine the critical state
dynamics at both networks by adding vortices at their boundaries. Once established the critical
states —which should be quite similar at both networks— we would mimic the injection of an
increasing transport current in the upper plate by ”slowly tilting” there the boundary conditions,
and examine the avalanche dynamics at the lower plate. The coupling constant, ¢, might be able
to tune interesting dynamic phases in the style of 183! . This simulation, however, best reproduces
a flux transformer-like experiment in which the superconducting films are substituted by infinite
slabs: it is well known that the vortex distribution of films in perpendicular applied fields can be

extremely complex due to strong demagnetizing effects 145184

, and their modeling is eventually
beyond the original Bassler-Paczuski CA model, at least close enough to the sample boundaries.
However, the case of the pancake-vortex dynamics in layered supercondcutors might be easier
to approach, since it basically consists in many paralell CA networks, which helps to get rid of
extreme demagnetizing effects.

A further variation of the Bassler-Paczuski CA could be also applied to simulate charge trans-
port in mesoscopic structures of the kind described at the end of section 4. The lattice sites would
resemble very closely the metallic dots in which charges are confined, the vortices would now repre-
sent charges, and the pinning strengths would be substituted by the random offset voltages at the
islands. Finally, the new force would depend on the potential difference between adjacent islands,
which, in turn, would be a function of their charges. Then, if V; > V; + constant 177, charge
would be transferred from site i to site j. Otherwise, no transfer would take place. Even when
these ideas are very preliminar, they could be refined to study the avalanche behaviour of such
mesoscopic systems, which, as a matter of fact, has not been directly probed in the experiment.

After so many examples of how the road between sand and vortex piles can be followed in

both directions —including detours to other systems—, we could state a final question: why not
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substitute vortices for grains, and use the Bassler-Paczuski CA for simulating avalanches in some

sandpile experiments?

6. Conclusion

Experiments in vortex avalanches have demonstrated the validity of the sandpile mechanical
analogue to understand some dynamic properties of the critical state in type II superconductors.
How far this analogy can be exploited is still an open question. The temperature-dependent
change in behavior of the superconducting critical state from power-law to peaked vortex size
distributions observed in some experiments —possibly related to vortex inertia— is one of the most
intriguing aspects of the problem. State-of-the-art experimental techniques for the measurement
of the local magnetic induction have allowed, in the last years, to get a preliminary picture of
the spatio-temporal correlations of vortex avalanches, but more work should be done, specially
regarding the correlations along the direction paralell to the applied field. A variety of vortex-
avalanche experiments exploring different geometries and the inclusion of transport currents is
waiting for future efforts. Some experiments on sandpiles and magnet arrangements might also
help to understand the dynamics of vortex avalanches. Cellular automata (CA) models —which
have already shown their effectiveness in approaching vortex avalanches— constitute an elastic tool
to tackle some of these problems, if local rules are carefully selected on a solid phenomenological
background. There is no doubt that the zoology of ”vorticial CA’s” will grow fast in the next

years.

Acknowledgments

I would like to thank the Editors for the liberty I enjoyed to choose the subject of this article
and their continued encouragement, particularly from L.M. Gaggero. I am indebted to my former
student and colleague R. Mulet for being my partner in the difficult task of tackling new scien-
tific problems in a Third World environment along many years, and, specifically, for compulsive
arguments on avalanche dynamics. I highly appreciate discussions with R. Cruz, A.J. Batista, O.
Ramos, A. Vazquez, O. Sotolongo, K. Bassler, M. Paczuski, G. Reiter, A. Rimberg and Y. Paltiel;
scientific advice from C.W. Chu, J.R. Clem, H. Herrmann and E. Zeldov, and experimental de-
tails provided by E. Nowak and K. Behnia. I also thank the critical reading of the manuscript
by G. Reiter, R. Mulet and K.Bassler, as well as the latter and G. Gunaratne for cooperation in
Figure 10. Material support during the last stage of this work is gratefully acknowledged to the
ICSC-World Laboratory, the Physics Department at the University of Houston, and the Texas
Center for Superconductivity. Thanks to my wife and family, writing this paper has not seriously

damaged my mental health.



126 E. Altshuler

References

1.

2.

— =

13.
14.
15.
16.
17.

18.

19.
20.
21.
22.
23.
24.

25.
26.
27.

28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

i B

J.C. Maxwell: ” The theory of molecular vortices applied to statical electricity”. Philo-
sophical Magazine, January-February 1892

H. Kammerlingh-Onnes : ” Sur les résistances électriques”. En la Théorie du rayonnement
et les quanta, rapports et discussions de la réunion tenue Bruzelles, du 30 octobre au 3
novembre 1911 sous les auspices de M.E. Solvay, pgs 304-312

For an excellent review, see D.R. Tilley and J. Tilley Superfluidity and Superconductivity
(3rd. ed.), Adam Hilger, Bristol and New York, 1990

J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108 (1957) 1175-1204

F. London and H. London, Proc. Roy. Soc. A149 (1935) 71

W. Meissner and R. Ochsenfeld, Naturwiss 21 (1933) 787

R. Doll and M. Nébauer, Phys. Rev. Lett. 7 (1961) 51-52

B.S. Deaver, Jr. and W.M. Fairbank, Phys. Rev. Lett., 7 (1961) 43-46

B.D. Josephson, Phys. Lett. 1 (1962) 251-253

P.W. Anderson and J.M. Rowell, Phys. Rev. Lett. 10 (1963) 230-232

P.W. Anderson, in Lectures on the manybody problem, Ravello, 1963 (E.R. Caianello, Ed.)
vol. 2, Academic, 1964, p 113-135

D.B. Sullivan and J.E. Zimmerman, Am. J. Phys. 45 (1974) 429-433

V.L. Ginzburg and L.G. Landau, Zh. Eksp. Teor.Phys. 20 (1950) 1064

V.L. Ginzburg and L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34 (1958) 1240

A.A. Abrikosov Zh. Ezsp. Teor. Fiz. 32 (1957) 1442

U. Essman and H. Triuber. Phys. Lett. 24A (1967) 526

T.P. Orlando and K.A. Delin Foundations of Applied Superconductivity, Addison-Wesley,
1991.

L. Onsager, Nuovo Cimento 6 (1949) 249, H.E. Hall and W.F. Vinen, Phil. Mag. 46
(1955) 546

M. Tinkham Introduction to Superconductvity McGraw-Hil, 1975

V.A. Kozlov and A.V. Samokhvalov, JETP Lett. 53 (1991) 158

V.A. Kozlov and A.V. Samokhvalov, Physica C 213 (1993) 103

Y. A. Genenko, Phys. Rev. B 49 (1994) 6950

R. Mulet and E. Altshuler, Physica C 252 (1995) 295-302

F. Pérez—Rodrfguez, A. Peérez- Gonzdlez, J.R. Clem, G. Gandolfini and M.A.R.
LeBlanc, Phys. rev. B 56 (1997) 3473

E. Altshuler and R. Mulet, Physica C 292 (1998) 39-47

J. Bednorz and K.A. Miiller, Z. Phys. B64 (1986) 189

M. Wu, J. Ashburn, C. Torng, O. Hor, R. Meng, L. Gao, Z. Huang and C.W. Chu,
Phys. Rev. Lett. 58 (1987) 908

H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys. Lett. 27 (1988)
209

Z. Sheng and A. Hermann, Nature 332 (1988) 55

A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Nature 363 (1993) 56

L.N. Bulaevskii, Zh. Eksp. Teor. Fiz. 64 (1973) 2241

K.B. Efetov, Zh. Eksp. Teor. Fiz. 76 (1979) 1781

J.R. Clem and M.W. Coffey, Phys. Rev. B42 (1990) 6209

J.P. Carton, J. Phys. I (Paris) 1 (1991) 113

S.N. Artemenko and A.N. Kruglov, Phys. Lett. A 143 (1990) 485

M.V. FeigeI'man, V.B.Geshkenbein and A.I. Larkin, Physica C 167 (1990) 17

A. Buzdin and D. Feinberg, J. Phys. (France) 51 (1990) 1971

J.R. Clem, Phys. Rev. B43 (1991) 7837

K.H. Fischer, Physica C 178 (1991) 161



40

41.
42.
43.
44.
45.

46.
47.

48.
49.

50.

51.

52.
53.

54.

55.
56.
57.

58.
59.
60.
61.

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

Vortex avalanches in type II superconductors: the sandpile perspective 127

. S. Chakravarty, B.I. Ivlev and Yu.N. Ovchinnikov, Phys. Rev. B 42 (1990) 2143

L.N. Bulaevskii, M. Ledvij and V.G. Kogan, Phys. Rev. B 46 (1992) 366

J.Bardeen and M.J.Stephen, Phys. Rev. A 140 (1965) 1197

A.M. Campbell and J.E. Evetts, Adv. Phys. 72 (1972) 199

Ch. Bean, Rev. Mod. Phys. 30, 31 (1964)

Y.B. Kim, C.F. Hempstead and A.R. Strnad, Phys. Rev. Lett. 9 (1962) 306; P.W. An-
derson and Y.B. Kim, Rev. Mod. Phys. 36 (1964) 39; Y.B. Kim, C.F. Hempstead and
A.R. Strnad, Rev. Mod. Phys. 36 (1964) 43

W.A. Fietz, M.R. Beasley, J. Silcox and W.W. Webb, Phys. Rev. A 136 (1964) 335
See, for example: A.M. Campbell and J.E. Evetts, Adv. Phys. 72 (1972) 199; H. Ullmaier
Irreversible properties of type II superconductors, Springer, Berlin, 1975; K. Tachikawa, K.
Kitazawa, H. Maeda and T. Mstsushita (eds.) Critical state in superconductors, World
Scientific, 1995.

X.S. Ling, D. Shi and J.I. Budnik, Physica C 185-189 (1991) 2181

Z. Koziol, P.F. de Chatel, J.M. Franse, Z. Tarnawski and A.A. Menovsky, Physica C
212 (1993) 133

G.T. Seidler, C.S. Carrillo, T.F. Rosenbaum, U. Welp, G.W. Crabtree and V.M. Vi-
nokur, Phys. Rev. Lett. 70 (1993) 2814

P. Liderer, J. Boneberg, P. Briill, V. Bujok and S. Herminghaus, Phys. Rev. Lett. 71 2646;
C.A. Durdn, P.L. Gammel, R.E. Miller and D.J. Bishop, in Critical state in supercon-
ductors, K. Tachikawa, K. Kitazawa, H. Maeda, T. Matsushita (eds.), World Scientific,
1995 (p. 16); B-U. Runge, U. Bolz, J. Eisenmenger and P. Leiderer, paper presented at
M2S-HTSC-VI, Houston, Texas, feb. 20-25, 2000.

S. Field, J. Witt and F. Nori, Phys. Rev. Lett. 74(1995) 1206

R.J. Zieve, T.F. Rosenbaum, H.M. Jaeger, G.T. Seidler, G.W. Crabtree and U. Welp,
Phys. Rev. B 53 (1996) 11849

E.R. Nowak, O.W. Taylor, L. Liu, H.M. Jaeger and T.J. Selinder, Phys. Rev. B 55 (1997)
11702

K. Kawashima, Phys. Rev. B 58 (1998) 490

C.M. Aegerter, Phys. Rev. E 58 (1998) 1438

P. Esquinazi, A. Setzer, D. Fuchs, Y. Kopelevich, E. Zeldov and C. Assmann, Phys.
Rev. B 60 (1999) 12454

K. Behnia, C. Capan, D. Mailly and B. Etienne. cond-mat/9902334 (25 feb 1999)
P.G. DeGennes Superconductivity of metals and alloys. Benjamin, New York, 1996.

O. Pla and F. Nori, Phys. Rev. Lett. 67 (1991) 919

X.S. Ling and J.I. Budnik, in Magnetic susceptibility of superconductors and other spin
systems ed. R.A. Hein, T.L. Francavilla and D.H. Liebenberg, Plenum, New York, 1991
(p. 377)

C. Tang, Physica A 194 (1993) 315

R.A. Richardson, O. Pla and F. Nori, Phys. Rev. Lett. 72 (1994) 1286

C. Reichhardt, C.J. Olson, J. Groth, S. Field and F. Nori, Phys. Rev. B 52 (1995) 10441
E. Bonabeau and P. Lederer. Phys. Rev. B 52(1995) 494

S. Spencer, H.J. Jensen, Physica C 264 (1996) 95

R. Mulet and E. Altshuler, Physica C 281 (1997) 317

K.E. Bassler and M. Paczuski, Phys. Rev. Lett. 81 (1998) 3761

R. Prozorov and D. Giller, cond-mat/9901344v2

G. Mohler and D. Stroud, Phys. Rev. B 60 (1999) 9738

R. Cruz, R. Mulet and E. Altshuler, Physica A 275 (1999) 15

K.E. Bassler, M. Paczuski and G. Reiter, Phys. Rev. Lett. (15 November, 1999)

R. Mulet, R. Cruz and E. Altshuler, preprint (2000)

Y.B. Kim, C.F. Hempstead and A.R. Strnad, Phys. Rev. Lett. 9 (1962) 306



128 E. Altshuler

75. P.W. Anderson, Phys. Rev. Lett. 9 (1962) 309

76. P.W. Anderson and Y.B. Kim, Rev. Mod. Phys. 36 (1964) 39

77. E. Altshuler et al, unpublished (1990)

78. M.R. Beasley, R. Labush and W.W. Webb, Phys. Rev. 181 (1969) 682

79. M.V. Feigel’'man, V.B. Geshkenbein, A.I. Larkin and V.M. Vinokur, Phys. Rev. Lett. 63
(1989) 2303

80. E. Zeldov, N.M. Amer, G. Koren, A. Gupta, R.J. Gambino and M.W. McElfresh, Phys.
Rev. Lett. 62 (1989) 3093

81. Y. Yeshurum and A.P. Malozemoff, Phys. Rev. Lett. 60 (1988) 2202

82. Y. Yeshurum, A.P. Malozemoff and A. Shaulov, Rev. Mod. Phys. 68 (1996) 911

83. E. Altshuler, R. Cobas, A.J. Batista-Leyva, C. Noda, L.E. Flores, C. Martinez and
M.T.D. Orlando, Phys. Rev. B 60 (1999) 3673

84. B.B. Goodman and M. Wertheimer, Phys. Lett. 18 (1965) 236

85. S.H. Goedmoed, C. van Kolmeschate, J.W. Metselaar and D. DeKlerk, Physica 31 (1965)
537

86. S.H. Goedmoed, C. van Kolmeschate, P.H. Kes and D. DeKlerk, Physica 32 (1966) 1183

87. P.S. Swartz and C.P. Bean, J. Appl. Phys. 39 (1968) 4991

88. J.C. Levet, M. Potel, P. Gougeon and H. Noel, Nature 331(1988)307

89. J.L. Tholence, H. Noel, J.C. Levet, M. Potel and P. Gougeon, Solid State Commun. 65
(1988) 1131

90. M. Guillot, M. Potel, P. Gougeon, H. Noel, J.C. Levet, G. Chouteau and J.L. Tholence,
Phys. Lett. A 127 (1988) 363

91. M. Guillot, J.L. Tholence, O. Laborde, M. Patel, P. Gougeon, H. Noel and J.C. Levet,
Physica C 162-164 (1989) 361

92. K. Chen, S.W. Hsu, T.L. Chen, S.D. Lan, W.H. Lee and P.T. Wu, Appl. Phys. Lett. 56
(1990) 2675

93. K. Chen, Y.C. Chen, S'W. Hsu, W.H. Lee, and P.T. Wu, Physica C 173 (1991) 227

94. A. Gerber, J.N. Li, Z.Z. Tarnawsky, J.J.M. Franse and A.A. Menovsky, Phys. Rev. B 49
(1993) 6047

95. L. Gao, Y.Y. Xue, R.L. Meng and C.W. Chu preprint No. 93:076 (1993), Texas Center
for Superconductivity.

96. K.H. Miiller and C. Andrikidis, Phys. Rev. B 49 (1994) 1294

97. L. Legrand, I. Rosenman, R.G. Mints, G. Collin and E. Janod, Europhys. Lett. 34 (1996)
28

98. M.N. Wilson Superconducting magnets, Clarendon Press, Oxford, 1983

99. C. Coulomb, in Memoir de Mathematique et de Physique, Vol. 7, Academie de Sciences,
L’Imprimerie Royale, Paris (1773), p.343

100. M. Faraday, Phil. Trans. R. Soc. London 52 (1831) 299

101. O. Reynolds, Philos. Mag. 20 (1885) 469

102. D. Bideau and J.A. Dodds (eds.) Physics of Granular Media, Les Housches Series, Nova
Science Publishers, 1991

103. H.M. Jaeger and S.R. Nagel, Science 255 (1992) 1523

104. R.P. Behringer, Nonlinear Science Today 3 (1993) 1

105. D. Bideau and A. Hansen (eds.) Disorder and Granular Media, Random Materials and
Processes Series, North Holland, New York, 1993

106. H.M. Jaeger, J.B. Knight, C.H. Liu and S.R. Nagel, Mater. Res. Bull. 19 (1994) 25

107. A. Mehta (ed.) Granular Matter an Interdisciplinary Approach, Springer-Verlag, New
York, 1994

108. A. Mehta and G.C. Barker, Rep. Prog. Phys. 57 (1994) 383

109. R.P. Behringer, Proc. MRS 367 (1995) 461

110. H.H. Hayakawa, H. Nishimori, S. Sasa and Y.H Taguchi, Jpn. J. Appl. Phys. 34 (1995)



Vortezx avalanches in type II superconductors: the sandpile perspective 129

397

111. H.M. Jaeger, S.R. Nagel and R.P. Behringer, Rev. Mod. Phys. 68 (1996) 1259

112. J. Duran Physics of Granular Materials, Springer Verlag, New York, 1999

113. L.P. Kadanoff, Rev. Mod. Phys. 71 (1999) 435

114. P.G. deGennes, Rev. Mod. Phys. 71 (1999) S374

115. H.J. Herrmann, Physica A, 263 (1999) 51

116. P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987); C. Tang and P.
Bak, Phys. Rev. Lett. 60, 2347 (1988); M. Paczuski and S. Boettcher, Phys. Rev. Lett.
77, 111 (1996)

117. J.J. Alonso and H.J. Herrmann, Phys. Rev. Lett. 76 (1996) 4911

118. E. Altshuler, O. Ramos, C. Martinez, L.E. Flores and C. Noda, Preprint (1999)

119. H.M. Jaeger, C.H. Liu and S.R. Nagel, Phys. Rev. Lett. 62 (1989) 40

120. C.S. Campbell and C.E. Brennen, J. Fluid. Mech. 151 (1985) 167; S.F. Edwards and
R.B.S. Oakeshott, Physica A 157 (1989) 1080; A. Mehta and S.F. Edwards, Physica A
157 (1989) 1091; H.M. Jaeger and S.R. Nagel, Science 255 (1992) 1523; H.J. Herrmann,
in Disorder and Granular Media (Bideau and Hansen, eds.), North-Holland, Amsterdam,
1993 (pag. 305).

121. J.C. Williams, Powder Techn. 15 (1976) 245; A. Rosato, K.J. Strandburg, F. Prinz
and R.H. Swendsen, Phys. Rev. Lett. 58 (1987) 1038; Powder Techn. 48 (1986) 239; P.K.
Haff and B.T. Werner, Powder Techn. 49 (1986) 59; P. Devillard, J. Physique 51 (1990)
369; R. Jullien, P. Meakin and A. Pavlovitch, Phys. Rev. Lett. 69 (1992) 640;

122. P. Bak "How Nature works”, Springer Verlag, New York, 1996

123. L.P. Kadanoff, S.R. Nagel, L. Wu and S. Zhou, Phys. Rev. A, 39, 6524 (1989)

124. See, for example, Wilde and Singh Statistical Mechanics, Wiley, New York, 1998.

125. G.A. Held, D.H. Solina, D.T.Keane, W.J. Haag, P.M. Horn and G. Grinstein, Phys.
Rev. Lett. 65, 1120 (1990)

126. M. Bretz, J.B. Cunningham, P.L. Kurezynski and F. Nori, Phys. Rev. Lett. 69 (1992)
2431

127. P. Evesque, Phys. Rev. A 43 (1991) 2720

128. J.Rosendahl, M. Vekic and J. Kelley, Phys. Rev. Lett. 47, (1993) 1401

129. P. Evesque, D. Fargaix, P. Habib, M.P. Luong and P. Porion, Phys. Rev. E (1993) 2326

130. S.K. Grumbacher, K.M. McEwen, D.A. Halverson, D.T. Jacobs and J. Linder, Am. J.
Phys. 61, (1993) 329

131. J. Rodendahl, M. Vekic and J.E. Rutledge Phys. Rev. Lett.) (73 (1994) 537

132. V. Frette, K.Christensen, A. Malthe-Sgslashrensen, J. Feder, T. Jossang and P.
Meakin, Nature, 379, 49 (1996)

133. K. Christensen, A. Corral, V. Frette, J. Feder and T. Jgssang, Phys. Rev. Lett. T7
(1996) 107

134. Y.B. Kim, C.F. Hempstead and A.T. Strnad. Phys. Rev. 131(1963)2468

135. C. Heiden and G.I. Rochlin, Phys. Rev. Lett. 21 (1968) 691

136. C.R. Wischmeyer, Phys. Lett. 19 (1965) 543-545

137. A.L Larkin and Yu.N. Ovchinnikov, Zh. Eksp. Teor.Fiz. 65 (1973) 1704

138. A.L Larkin and Yu.N. Ovchinnikov, J. Low Temp. Phys. 34(1979)409-427

139. G. Blatter, V.B. Geshkenbein and V.M. Vinokur, Phys. Rev. Lett. 66 (1991) 3297

140. G. Blatter, M.V. Feigel’'man, V.B. Geshkenbein, A.I. Larkin and V.M. Vinokur, Rev.
Mod. Phys. 66 (1993)1125

141. R.J. Donnelly, Cryogenics in Physics Vade Mecum, edited by H.L. Anderson. AIP,
1981.

142. M. Konczykowsky, L.Burchalov, Y. Yeshurun and F. Holtzberg, Supercond. Sci. Tech.
4 (1991) S33

143. N. Chikumoto, M. Konczykowsky, N. Motohira, and A.P. Malozemoff, Phys. Rev. Lett.



130 E. Altshuler

69 (1992) 1260

144. M. Darwin, J. Deak, L. Hou, M. McElfresh, E. Zeldov, J.R. Clem and M. Idenbom,
Phys. Rev. B 48 (1993) 13192

145. E. Zeldov, A.I. Larkin, V.B. Geshkenbein, M. Konczykowsky, D. Majer, B.
Khaykovich, V.M. Vinokur and H. Shtrikman, Phys. Rev. Lett. 73 (1994) 1428

146. Y. Abufalia, A. Shaulov, Y. Wolfus, R. Prozorov, L. Burlachkov, Y. Yeshurun, D.
Majer, E. Zeldov and V.M. Vinokur, Phys. Rev. Lett. 75 (1995) 2404

147. Y. Abufalia, D. Giller, Y. Wolfus, A. Shaulov, Y. Yeshurum, D. Majer, E. Zeldov, J.L.
Peng and R.L. Greene, J. Appl. Phys. 81 (1997) 4944

148. Y. Abufalia, M. McElfresh, A. Shaulov, Y. Yeshurum, Y. Paltiel, D. Majer, H. Strik-
man and E. Zeldov, Appl. Phys. Lett. 72 (1998) 2891

149. Y. Abufalia, Y. Wolfus, M. McElfresh, A. Shaulov, Y. Yeshurum, Y. Paltiel, H. Shtrik-
man and E. Zeldov, J. Appl. Phys. 85 (1999) 5471

150. R. Busch, G. Ries, H. Werthner, G. Kreiselmeier and G. Saemann-Ischenko, Phys. Rev.
Lett. 69 (1992) 522

151. H. Safar, P.L. Gammel, D.J. Bishop, D.J. Mitzi and A. Kapitulnik, Phys. Rev. Lett. 68
(1992) 2672

152. H. Safar, P.L. Gammel, D.A. Huse, S.N. Majumdar, L.F. Schneemeyer, D.J. Bishop,
D. Lépez, G. Nieva and F. de la Cruz, Phys. Rev. Lett. 72 (1994) 1272

153. Y.M. Wan, S.E. Hebboul and J.C. Garland, Phys. Rev. Lett. 72 (1994) 3867

154. D. Lépez, G. Nieva, F. de la Cruz, H.J. Jensen and D. O’Kane, Phys. Rev. B 50 (1994)
9684

155. F. de la Cruz, D. Lépez and G. Nieva, Phil. Mag. B 70 (1994) 773

156. Yu. Eltsev, W. Holm and O. , Phys. Rev. B 49 (1994) 12333; Physica C 235-240 (1994)
2605

157. Yu. Eltsev and O. Rapp, Phys. Rev. B 51 (1995) 9419

158. T.S. Lee, N. Missert, L.T. Sagdahl, J.R. Clem, K. Char, J.N. Eckstein, D.K. Fork, L.
Lombardo, A. Kapitulnik, L.F. Scheemeyer, J.V. Waszczak and R.B. Van Dover, Phys.
Rev. Lett. 74 (1995) 2796

159. S.S. Manna and D.V. Khakdhar, Phys. Rev. E 58 (1998) 39-74

160. E. Nowak, private communication

161. P.H. Kes, in J. Evetts (ed.) Concise Encyclopedia of Magnetic and Superconducting Mate-
rials, Pergamon Press, 1992.

162. K. Behnia, private communication.

163. B. Gutenberg and C. Richter Seismicity of the Earth. Princeton Univerity Press, Prince-
ton, 1949

164. R. Burridge and L. Knopoff Bull. Seis. Soc. Am. 57 (1967) 341

165. P. Bak and C. Tang, J. Geophys. Res. B 94 (1989) 15635

166. A. Sornette and D. Sornette, Europhys. Lett. 9 (1989) 197

167. K. Ito and M. Matsuzaki, J. Geophys. Res. B 95 (1990) 6853

168. Z. Olami, H.J. Feder and K. Christensen, Phys. Rev. Lett. 68 (1992) 1244

169. H. Leschhorn, Physica A 195 (1993) 324

170. H.J. Feder and J. Feder, Phys. Rev. Lett. 66 (1991) 2669

171. J.M Carlson and J.S. Langer, Phys. Rev. Lett. 62(1989) 2632

172. 1. Giaever, Phys. Rev. Lett. 15 (1965) 825

173. R. Labush, Phys. Stat. Solidi. (b) 32 (1969) 439

174. E.H. Brandt, Phys. Stat. Solidi (b) 35 (1969) 1027; 36 (1969) 371

175. C. Kurdak, A.L. Rimberg, T.R. Ho and J. Clarke, Phys. Rev. B bf 57 (1998) 6842

176. A.J. Rimberg, T.R. Ho and J. Clarke, Phys. Rev. Lett. 74 (1995) 4714

177. A.A. Middleton and N.S. Wingreen, Phys. Rev. Lett. 71 (1993) 3198

178. A.J. Rimberg, personal communication (1999)



Vortezx avalanches in type II superconductors: the sandpile perspective 131

179. See, for example, G. Carneiro, Phys. Rev. B 50 (1994) 6982; R. Mulet and E. Altshuler,
Phys. Stat. Solidi (b) 182 (1994) K31; R. Mulet and E. Altshuler, Physica C 281 (1997)
317

180. J.M. Haile Molecular dynamics simulations, Wiley, New York, 1992.

181. K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura. V.V. Moshchalkov,
Science 74 (1996) 1167

182. K. Bassler et al, unpublished (1999)

183. C. Reichhardt, C.J. Olson and F. Nori, cond-mat/9703021 (1997)

184. M. Benkraouda and J.R. Clem, Phys. Rev. B 53 (1996) 5716



