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Abstract

Through Monte Carlo simulations, and using a suitable probability, we studied the dynamic formation of the Bean’s
critical state as the applied field increases in a one-dimensional superconductor with a periodic distribution of pinning
centers. We considered an applied field acting on one of the surfaces of the sample and we counted the number of vortices
exiting out from the other surface. We found a threshold response time, separating the region where criticality was present
from the region where it was not. Defining an avalanche as the number of vortices who left the superconductor from one
critical state to the next one, we also noted the absence of characteristic sizes and times of avalanches, in a wide range of
response times, allowing us to analyze our results in the framework of the self-organized criticality theory. Some
contradictions between our simulations and that theory are explained based on the simplicity of our model. © 1997 Elsevier

Science B.V.

1. Introduction

The similarity between the critical state models in
type-Il superconductors and sandpiles was first
pointed out by de Gennes [1] in 1966. More than 20
years later Bak et al. [2,3] developed what is now
known as the self-organized criticality theory (SOC)
which tries to explain the behavior of some complex
systems as sandpiles, earthquakes, etc. These sys-
tems show a s~ ¢ distribution of avalanche sizes, a
™" distribution of duration of avalanches and a f~#
power spectrum.

The early work of Vinokur et al. [4] is specially
relevant in the field of superconductivity, since they
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showed that, if the pinning potential depends loga-
rithmically on the current density, the system ex-
hibits SOC behavior. In 1993, Wang and Shi [5,6]
reported experimental evidence for flux avalanches
in high-T. superconductors from relaxation experi-
ments in BiSrCaCuO and YBaCuO single crystals.
In 1994, Field et al. [7] designed an experiment to
check if the behavior of type-II superconductors
could be described by the SOC theory, as seems to
happen for sandpiles [8]. They submitted a niobium
hollow cylinder to an increasing axial magnetic field
and measured the flux penetration in the cylinder’s
hole. Their results showed a good coincidence with
the SOC predictions. More recently Nowak et al. [9]
designed a similar experiment to study the flux
dynamics of Nb rings at different temperatures. They
found a crossover from a broad distribution of
avalanche sizes to a narrow distribution of system

_ spanning events.
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A rich variety of computer simulations have been
carried out to elucidate which models exhibit SOC
behavior (see, for example, the work of Kadanoff et
al. [10]) and to find out which phenomena could be
described by the SOC theory [11-13]. In the field of
superconductivity, Pla et al. [13] have found
avalanche behavior in the vortex lattice of type-II
superconductors close to the pinning—depinning tran-
sition through molecular dynamic techniques.

In this work we report and discuss Monte Carlo
simulations for a one-dimensional superconductor
with a periodic distribution of pinning centers in a
system arranged in order to mimic the experiment
described in Ref. [6] assuming a ** vortex-glass-like”
[14] pinning potential.

2. The simulation

We considered a one-dimensional superconductor
with 32 pinning centers in the presence of an applied
field acting on one of its surfaces. The external field
was increased by AH every t, Monte Carlo step
(m.c:s.) as defined below. Immediately, a propor-
tional number of vortices was introduced at the
corresponding sample surface in order to satisfy the
boundary condition. We chose the vortex-glass-like
probability:

Je
T i ()
0 <y

Pia=

as the vortex probability to jump from the pinning
center i to the i+ 1, where j is the local current
density, which is proportional to the number of
vortices in the (i + Dth pinning center minus the
number of vortices in the ith pinning center [15,16],
Jo is the critical current density of the superconduc-
tor, and n = U, /kT is a simulation parameter related
to the temperature and to the depth of the pinning
centers of our system.

Our algorithm can be described as follows.

(1) We fixed a field in one of the superconductor
boundaries and we calculated the probability, Eq.
(1), for all the pinning centers. This operation de-
fines our m.c.s.

(2) Every time the probability was calculated, it
was compared with a random number. If the proba-
bility was greater than the random number, one

vortex was removed from the ith pinning center and
added to the (i + Dth.

(3) We compared j and j, for all the pinning
centers. If j=j for all of them, we said the system
was in the critical state, and we counted the number
of vortices that left the superconductor until a new
critical state was reached. We called this number the
avalanche size, and the number of iterations needed
to reach one critical state from another, the /ifetime
of the avalanche.

{4) Once the probability, Eq. (1), was calculated
t, times for each pinning center, the external field
was increased.

(5) We repeated steps 1 to 4 until we obtain 1000
avalanches.

The evolution of the vortex distribution in our
simulations could be roughly visualized in the fol-
lowing way. As the external field is increased from
zero, the average slope of the flux distribution profile
starts to increase from zero, as j does for the average
pinning center. Eventually, the condition j=j, is
reached for all pinning centers, so the profile is
perfectly linear, and is called critical. As the external
field is further increased, j increased above j, and,
after a certain value of H (in which a ‘‘supercritical”’
average profile is reached), the slope eventually de-
creases to j=j, due to the exit of vortices through
the surface opposite to the one of the applied field,
defining an avalanche. The ‘‘critical-supercritical—
critical’”” sequence repeats again and again as the
external field is increased.

It should be pointed out that, though our algo-
rithm seems very similar to the ones presented by
Bak et al. [3], there is an important difference which,
at least for superconductors, turns our approach more
realistic: in our case, the motion of vortices depends
exponentially on some activation barrier which is
related with a critical parameter j, {analogous to the
parameter presented by Bak et al. [3]) and with the
microscopic state of the system. However, our prob-
ability choice does not take into account thermal
activation when j <j_. If it did the relaxation effects
would never allow the establishment of a steady
critical state, though this constitutes a limitation of
our model it is the simplest practical way to define
the avalanche size, and to study the dynamic forma-
tion of the critical state after a field perturbation in
our conditions.
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3. Results and discussion

Figs. 1 and 2 show the distributions of avalanche
sizes D(s) and lifetimes D(r) for different values of
t, for a system with = 1. To obtain these results
we made two restrictions in our program. First, we
added only one vortex at the superconductor bound-
ary when the field was increased. Second, we de-
fined the critical current as proportional to a differ-
ence of just ome vortex between two neighboring
pinning centers. These last restrictions reduced our
time of simulations but did not change our general
conclusions. The system shows two qualitatively dif-
ferent behaviors. The first one is for 1, <220 m.c.s.,
for which the critical state is never reached and we
cannot asses the existence of avalanches or criticality
and hence it is not represented in the figures. The
second one appears for ¢, = 220 m.c.s. and displays
a power law behavior of D(s) and D(r) showing a
good coincidence with the predictions of the SOC
theory. It is interesting to note that the exponent in
D(s) and D(t) increases for larger response times,
giving a sharp distribution of avalanches around
s=1or t= 1000 mc.s. as ¢, becomes larger.

t; can be regarded as the time the system has to
reorganize itself after the action of some perturba-
tion, so we will call it ‘‘arrangement time’’. If it is
too short, we do not observe the formation of the
critical state. Experimentally, this behavior is ob-
served if the applied field is increased very rapidly
[6]. For intermediate times, the system displays
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Fig. 1. Distribution of avalanche sizes for n = 1.
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Fig. 2. Distribution of avalanche lifetimes for n=1.

avalanches in order to maintain its organization.
Finally, for infinite times all the avalanches will have
the same size, i.e. every vortex added to the system
will exit. -

In Fig. 3 we represent the distributions of
avalanche sizes corresponding to a system with n=0
1 for different arrangement times under the same
restrictions as in Figs. 1 and 2. From the picture we
can see that the time needed to reach the critical state
is lower than in the case represented in Figs. 1 and 2.
(A similar conclusion is reached studying the distri-
butions of avalanche times.) This means that the
system ‘‘answers’’ quickly the external perturbation
for lower values of m, i.e. for lower U, and higher
temperatures.
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Fig. 3. Distribution of avalanche sizes for n = 0.1.
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Fig. 4. Distribution of times between avalanches for = 1.

These results suggest that the presence or not of
power law distributions of avalanche sizes and life-
times is determined by two causes: the rate of varia-
tion of the applied field {as was experimentally
demonstrated in Ref. [6]) and the relation between
the pinning and the thermal energies in the system,
which seems to be consistent with recent experi-
ments [8]. Then, one might interpret them in the
following way: if the system is in the vortex glass
regime and the perturbation (field variation) is slow
enough, a critical state appears through the supercon-
ductor and it displays avalanches distributed follow-
ing a power law. It should be clear that this state is
minimally stable in the same sense of the one-dimen-
sional cellular automaton of Bak et al. [13].

Finally, in Fig. 4 we plotted the distribution of
times between avalanches for 7, =220 m.c.s. and
n =1, which is a sharp function centered approxi-
mately at half the arrangement time. This result is
not in agreement with the predictions of the SOC
theory, but in our opinion it is a consequence of the
assumption of periodical penetration of vortices into
the superconductor.

4, Conclusions

We have reported Monte Carlo simulations in
one-dimensional superconductors with a periodic dis-

tribution of pinning centers. We studied the system
in the presence of a varying applied field, and we
gave elements (o state that, if the vortices are pinned
in vortex-glass-like barriers and if the field is varied
slowly enough, the system exhibits scale invariance
for almost two decades as expected from the self-
organized criticality theory and as real experiments
show.
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