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Abstract

In this work the robustness of a simple cellular automaton developed by Bassler and Paczuski
(Phys. Rev. Lett. 81 (1998) 3761) to describe the critical state in type-II superconductors is
studied. Two different configurations of pinning centers are introduced and a new universality
class is found. The numerical values of the critical exponents were calculated following two
scaling techniques to ensure the validity of our results. (©) 2000 Published by Elsevier Science
B.V. All rights reserved.

1. Introduction

In type-Il superconductors, if the external magnetic field is greater than the first
critical field Hc;, vortices penetrate the material. These vortices move freely in ideal
superconductors if an electrical current is applied, destroying superconductivity [1].
However, in real materials, the existence of pinning centers prevent vortex motion if
the current is less than a certain value, called critical current.

Bean in 1966 [2] proposed that the distribution of magnetic field inside a real sample,
when the external magnetic field increases over Hcj, can be represented by a linear
profile in an H(x) graph, where the slope corresponds to the critical current density.

In 1989, Bak et al. [3], in an attempt to explain the behavior of many dynamical
systems, developed the concept of self-organized criticality (SOC). In their approach,
after long time of avalanches evolution, those systems reach a complex state which
exhibit a power law in their avalanche size distributions and in their avalanche duration
distributions, and f—* noise. Sandpiles have become a paradigm of these sytems, and
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their closed similitude with the critical state of superconductors [4] quickly called the
attention of researchers in the field [5-7].

In fact, Field et al. in 1996 [8] experimentally observed SOC in vortex avalanches
at the inner wall of a low-T, superconducting hollow cylinder submitted to slowly
ramped axial magnetic fields. In a similar experiment performed on a low 7, thin
film ring, Nowak et al. [9] observed either potential or peaked distributions of vortex
avalanche size, depending on temperature. Finally, in a recent experiment, Mailly and
Ethienn [10] measured the internal vortex avalanches in a low-7, film submitted to
an increasing magnetic field, and found power distributions of avalanche size only for
temperatures higher than 3 K.

On the other hand, many simulations had been performed on vortex avalanches. In
1994, Richardson et al. [11] developed a molecular dynamic model showing the discrete
evolution of the magnetic profiles inside the superconductors. Also using molecular
dynamic techniques, Olson et al. [12] tried to mimic Field’s experiment. They found
power distributions of avalanche sizes for high densities of pinning centers. However,
none of these simulations was able to estimate correctly the critical exponents involved
in the SOC theory for this system because of strongly finite size effects.

More recently, Bassler and Paczuski [13] proposed a simple cellular automata to
model the dynamics of magnetic flux motion at a length scale larger than the range
of vortex interaction for a system with a random distribution of pinning centers. They
obtained, using finite size scaling techniques, the existence of critical exponents for a
wide distribution of parameters in their simulation, and hence, of SOC. In this work,
we explore the robustness of this cellular automaton varying the distribution and depth
of the pinning centers.

In the next section we explain the Bassler and Paczuski model. In Section 3 we
present and discuss the results obtained using two novel pinning centers configurations:
periodic distributions and combined periodic plus random distributions. Finally the
conclusions are given.

2. Model

The Bassler and Paczuski cellular automaton [13] is a two-dimensional hexagonal
lattice where each site is occupied by m(x) vortices. Vortices in site x can move
towards site y only if the force acting on them, in that direction, is greater than zero.
This force is calculated using the following formula:

F=V(y)=V(x)+mx)—m(y)—1)+r(m(x)+m(x)—m(y1)—m(y2)) ,
(1)
where x;, x, and y;, y; are the other nearest neighbors of x and y, respectively, and
V(x) and V(y) are the strengths of the pinning centers at those sites. If the distributions

of pinning centers are random, V' (x) = p, with a probability ¢, and V(x) =0 with a
probability 1 — g. The parameter » (where » <1) characterizes the long distance action
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of the next-nearest neighbours. If there is more than one unstable direction, one of
them is chosen at random. All lattice sites are updated in parallel, and at each site
only one vortex can move on a particular update. Periodic boundary conditions are
applied to the top and the bottom of the lattice. The vortices that reach the right edge
of the system are removed, while they are not allowed to abandon the system through
its left edge.

An avalanche begins by randomly choosing a site at the left edge of the system and
adding one vortex to it. It continues with the consecutive update of the lattice sites
until no more unstable sites persist. Once the lattice is again stable, another vortex
is added. The avalanche size is defined as the number of toplings corresponding to
the addition of one vortex while the avalanche duration is defined as the number of
updatings necessary to complete one avalanche.

To characterize the system, in analogy with other SOC models, Bassler and Paczuski
[13] proposed and proved the following scaling ansatz for the probability distribution
of avalanches sizes (2), and avalanches durations (3):

P(s,L)=s""g(s/L") , (2)
P(t,L) =t "g(t/L7) (3)

and obtained the following set of scaling exponents for a wide range of parameters
values in the model 1 =1.63 £0.02, D=2.7+0.1, 7,=2.134+0.08 and z=1.5+0.1
which are related by the scaling relations

(2D —-1)=1, 4)
D(t—1)=2z(t,—1). ()

In our work, to ensure the validity of our results, we also used the following scaling
ansatzs [14] for the avalanches sizes and avalanches durations, respectively:

P(s,L)=L""f(s/L") , (6)
P(t,L) =L f(t/L*) . (7

Therefore, two new scaling exponents characterize our system f and w. They are
related to the previous ones by f =1D and w = 71,z, and satisfy the following scaling
relations:

p=2D—1 (®)
and
wo=p+z-D. 9)

With this notation, the Bassler and Paczuski results [13] give f=4.4, D=2.7, =3.19
and z = 1.5.



18 R. Cruz et al | Physica A 275 (2000) 15-21

o
£
-
I
N
N

D
L’ P(s/L”)
—r
o
n
s ooind 3 vund s sl soond soond soud sl sod ool vood v o s
)_‘_‘
-
1 bj |
-I-l.d.d.dnd.di-l»-lml-l-l-l:

Tipf ©=32 y 4o

107§ “f =1 4 %

A

10% 42 10°
-4
10 T T T -é ARAALL | T 3 T 1_1' T T T 1
10 10 5 10 10
s/L

Fig. 1. Finite scaling plot using (6) L = 100, 160,200 and (r; p;¢) = (0.1;3;0.1). Inset: finite scaling plot
using (7).

3. Results and discussion

Following Bassler and Paczuski [13], we first assumed a random distribution of
pinning centers, with parameters (7, p,q)=(0.1;3;0.1). The collapse of our results for
dimensions L=100, 160,200 using the scaling ansatz (6) and (7) can be seen in Fig. 1.
The critical exponents for these conditions are in good agreement with Ref. [13]. Simi-
lar results were obtained for other parameters within the range already checked in [13].

Then, we tested the model using a combination of periodic and random pinning
distributions. This kind of configuration introduces a new parameter to geometrically
characterize the system, i.e. the distance between the periodic pinning centers a. In our
simulations we used »=0.1, and a constant density of random pinning centers ¢ =0.1.
Like real irradiated superconducting materials, we used different pinning strenghts p;
and p, for periodic and random pinning centers, respectively. The periodic pinning
centers were always chosen stronger than or equal to the random ones trying to mimic
irradiation effects.

For the sets of parameters (p;; p»;a) = (10;1;20), (10;1;10), (5;1;10), (10;1;4)
and (20; 1;4) the critical exponents conserved the previously reported values of: 7 =
1.63+£0.04, 7,=2.13+£0.09, f=4.440.1, D=2.7£0.1, ®=32+0.2 and z=1.540.1
for different system dimensions, indicating the robustness of the system (see the two
data collapse presented in Fig. 2).

We also performed simulations using only a periodic pinning configuration. It was
demonstrated that the system also conserved the critical exponents for the sets of
parameters (p;a) = (5;10) (5;20), (5;4), (1;10) as is shown in Fig. 3. However, as
the data collapse in Fig. 4 displays, using lower values of a and stronger pinning
centers (for example: (10,4) and (20,4)) caused a decrease in the exponents f,7, 71,
and w to f=32+0.1, t=1454+0.02, 7, = 1.7 £ 0.08 and ®w = 2.6 £+ 0.2, while
z=1.6+0.1 and D=2.2+ 0.1, in good agreement with the scaling relations (4),(5),
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Fig. 2. Finite scaling plot using (7) L =100, 160,200 and (r; p1; p2;a)=(0.1;10; 1; 10). Inset: finite scaling
plot using (2).
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Fig. 3. Finite scaling plot using (6) L — 100, 160,200 and ( p;a)=(5;4). Inset: finite scaling plot using (3).

(8), and (9). This suggests the existence of a new universality class for dense and
strong periodic pinning configurations.

To study the origin of this new universality class we made the calculation using
a superposition of random and periodic pinning configurations with equal potentials
p1=p». The scalings results, presented in Fig. 5, show that the systems with parameters
(p1; p2;a)=1(10;10;4) conserved Bassler and Paczuski’s [13] exponents values.

These results and those obtained using only a periodic configuration with the set of
parameters ( p; a)=(5;4) (see Fig. 3) proved that the new universality class appears due
to the joint action of the strong periodic pinning centers and the negligible influence
of the random pinning distribution. If in the system one of these conditions is absent,
it will have a “normal” evolution.
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Fig. 4. Finite scaling plot using (7) L = 100,160,200 and (p;a) = (10;4). Inset: finite scaling plot using
(2).
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Fig. 5. Finite scaling plot using (7) L =100, 160,200 and (r; p1; p2;a)=(0.1;10; 10; 4). Inset: finite scaling
plot using (2).

The existence of the new universality class could be explained based on the following
qualitative argument. The presence of strong and correlated pinning, the negligible
influence of the random pinning and the low values of a could produce “magnetic
traps” [14] were vortices oscillate between neighbour pinning centers, increasing the
number of bigger avalanches, and then reducing the characteristic exponents, t,71;, 8
and .

Finally, an experiment is suggested to check the existence of this new universality
class. It consists in performing an avalanche detection experiment similar to the one
reported in Ref. [10], but before and after irradiating the sample with heavy ions in
order to obtain arrays of periodic “strong” pinning centers as reported by Harada et al.
[15]. If some relevant experimental parameters such as the magnetic field sweep rate
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and the temperature are conveniently tuned, critical exponents close to those reported
in [13] should be achieved before irradiation. After irradiation (under the same set of
parameters) the combination of “weak” random pinning plus “strong” periodic pinning
is expected to move the critical exponents towards the values reported here.

4. Conclusions

A cellular automaton model for vortex avalanches was analyzed in the presence
of periodic-random and periodic distributions of pinning centers. The robustness of
the model was proved for a wide range of parameters and the existence of a new
universality class for strong and dense periodic distribution of pinning centers was
shown. A qualitative argument to support the reasons for the appearance of this new
universality class was given.
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