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Simple model for plastic dynamics of a disordered flux-line lattice
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We use a coarse-grained model of superconducting vortices driven through a random pinning potential to
study the nonlinear current-voltage (I -V) characteristics of flux flow in type-II superconductors with pinning.
In experiments, theI -V relation measures flux flow down a flux density gradient. The work presented here
treats this key feature explicitly. As the vortex repulsion weakens, the vortex pile maintains a globally steeper
slope, corresponding to a larger critical current, for the same pinning potential. In addition, the magnitude of
the peak in the differential resistance falls as the resistance peak shifts to higher currents. The model also
exhibits so-called ‘‘I -V fingerprints’’ and crossover to Ohmic~linear! behavior at high currents. Thus, many of
the experimentally observed characteristics associated with the plastic flow of soft flux-line systems are repro-
duced in numerical simulations of the zero-temperature model. This model describes a two-dimensional slice
of the flux-line system at the scale of the London length (l). It does not include any degrees of freedom at
scales much smaller thanl, which are required to specify the degree of disorder in a flux-line lattice. Instead,
the nonlinear transport behaviors are related to the self-organized, large-scale morphologies of the vortex river
flow down the slope of the vortex pile. These morphologies include isolated filamentary channels, which can
merge at higher flow rates to make a braided river and eventually give uniform flow at even higher flow rates.
The filamentary structure is associated with anI -V characteristic that has concave, or positive, curvature. The
braided river is associated with the peak in the differential resistance, where the curvature of theI -V relation
changes to convex. The transition to Ohmic behavior comes about as the braided river floods when it cannot
absorb a higher level of flow. We propose that these self-organized morphologies of flux flow down a flux
gradient govern the various plastic flow behaviors, including nonlinearI -V characteristics, observed in type-II
superconductors with random pinning.

DOI: 10.1103/PhysRevB.64.224517 PACS number~s!: 74.60.Ge, 74.60.Jg, 64.60.Ht, 62.20.Fe
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I. INTRODUCTION

Collective transport in disordered media is a widespre
and poorly understood phenomenon. A great deal of exp
mental and theoretical effort in this area has been devote
studying the nonlinear dynamics of the disordered flux-l
lattice ~FLL! in type-II superconductors. The FLL exhibits
threshold behavior due to the competition between pinn
and flux-line repulsion.1,2 In response to a force, such as th
associated with a transport current, the three-dimensio
FLL can move smoothly via elastic deformations, mainta
ing its integrity and order. However, in another regime t
FLL deforms plasticly. In that regime disorder becomes m
important, and the moving FLL manifold tears as some fl
lines~in two dimensions, vortices! move while others do not
As a result, the flow pattern breaks up in a nonuniform w
It is generally believed that the microscopic structure of
FLL, or defects in it, is fundamental to transport behav
both in the plastic and elastic regimes.

Part of the attention to the dynamics of a moving FLL h
been motivated by interest in possible, exotic phase tra
tions and glassy phases, melting, and other complicated
narios associated with structural order in the FLL. Most e
periments, however, are essentially transport studies and
quoting Higgins and Bhattacharya,3 ‘‘notoriously ill-suited
for the study of thermodynamic phase transitions. These
periments yield direct information only about the mobility
0163-1829/2001/64~22!/224517~10!/$20.00 64 2245
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flux lines, i.e. on dynamics and pinning, which would th
have to be connected, through highly model-dependent w
to the structure of the state they pertain to.’’

Here, we show that many of the empirical results found
transport studies of plastic flux flow in type-II supercondu
ors may be obtained with an extremely simple model.4 It has
been recognized for many years that, in the presence of
ning, magnetic flux in type-II superconductors forms a p
with an overall, global slope, akin to a sandpile. Penetrat
of magnetic flux into superconductors driven solely by t
flux density gradient has been described using molecular
namics~MD! simulations5–10 and by the model used here4

However, the flux gradient has not been taken into accoun
any previous numerical simulation studies of the curre
voltage characteristic. One possible reason is that prev
numerical studies of flux motion at the scale of the vort
cores have not been able to reach a sufficiently large sys
size. The Bassler-Paczuski~BP! model,4 on the other hand, is
a coarse-grained model and describes the magnetic flux
namics at the much larger scale of the London length, m
ing the large-system-size limit much more accessible.

The numerical simulations presented here of the
model4 show that nonlinear behaviors, characteristic of e
perimental transport measurements of plastic flow in sup
conductors, arise as a result of vortex flow down a vor
density gradient. The effect of the transport current is m
eled by a shift in boundary conditions, which leads to a g
©2001 The American Physical Society17-1
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BASSLER, PACZUSKI, AND ALTSHULER PHYSICAL REVIEW B64 224517
eralized ‘‘tilt’’ of the vortex pile. Eventually the ‘‘tilt’’ is
sufficiently great so that some vortices can flow down
pile in the steady state, leading to the onset of a finite v
age. The vortex flow forms a variety of river morphologi
depending on the interaction strength between the vorti
compared to pinning, and the overall rate of flow. The flo
patterns of magnetic flux are self-organized together with
magnetic flux profile, which is the substrate on which t
flow takes place. Since the BP model does not contain
detailed information on the positions of the vortex cores
the microscale of the FLL, it cannot exhibit any structu
ordering or disordering behavior.

Although the BP model can also be studied at finite te
peratures, here we use the zero-temperature limit where
mal fluctuations of the flux motion may be ignored. T
zero-temperature approximation seems reasonable to
scribe the plastic transport dynamics of the low-tempera
superconductors and, perhaps, some aspects of the
temperature superconductors as well. Also, we consider
limit where the depairing current densityj 0 is extremely
large compared to the critical current densityj c . This corre-
sponds to the so-called ‘‘weak-pinning’’ regime.

We argue that many of the varieties of collective transp
dynamics observed in superconductors may be generi
repulsive particle systems driven through a disordered
dia. These behaviors are directly related in our coar
grained model to large-scale morphologies of flow down
vortex density gradient and changes from filamentary strin
to a braided river, to uniform flow at high applied curren
Since the BP model arguably contains the essential phy
of the disordered flux-line system, at a coarse-grained le
and reproduces a wide variety of experimental results
transport properties, we propose that these self-organi
large-scale flow morphologies are also governing the non
ear, plastic dynamics in the actual physical system: flux li
driven through a superconductor with a disordered pinn
landscape by an applied transport current.

A. Summary

In the next section, the results of an extensive experim
tal study of theI -V characteristics of 2H-NbSe2 as summa-
rized by Higgins and Bhattacharya3 are briefly stated. It is
these results we aim to model with numerical simulations
Sec. III, detailed explanations of the coarse-grained mo
and the methods used in the simulations are presented.
BP model was first used to describe vortex avalanches4 and
vortex rivers11 as seen in experiments.12,13Here a completely
deterministic variant of the original model is used to elim
nate all potentially spurious sources of noise. To describeI -V
experiments, a shift in boundary conditions, or generali
‘‘tilt’’ of the vortex pile, is applied to represent the effect o
a transport current. The resultant vortex flow represents
measured voltage. Section IV contains the main numer
results and a comparison with numerical results from M
simulations. The last section summarizes our conclusion

II. EXPERIMENTAL TRANSPORT MEASUREMENTS
THAT ARE MODELED

In a series of papers, Bhattacharya and Higgins3,14–16de-
scribe experiments on the nonlinear transport propertie
22451
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the FLL in the anisotropic superconductor 2H-NbSe2. In this
system, the pinning is extremely weak (j c / j 0;1026), the
lattice is well formed, and a robust ‘‘peak effect’’ occu
slightly belowHc2. Since the London lengthl is much less
than the film thickness, the system operates in the th
dimensional regime, where the flux-line interactions dec
exponentially for lengths larger thanl. They use the strong
magnetic field dependence of the critical current~which they
interpret in terms of a changing rigidity of the FLL! to ex-
plore the crossover between different type of dynamics
cluding ‘‘elastic’’ flow, ‘‘plastic’’ flow, and ‘‘fluid’’ flow. In
this regard, the material they study is an ideal experime
system, allowing the exploration of very different regimes
a well-controlled manner.

Near the upper critical magnetic field, they observe a p
nounced peak in the pinning force. This is referred to a
‘‘peak effect.’’ ~It should be distinguished from the peak
the differential resistance.! Equivalently, the critical current
I c , where some flux lines start to move, increases as
external magnetic fieldH increases. We will focus mostly on
results associated with the current-voltage (I -V) relation as
the external magnetic fieldH is varied. Although we can
describe the nonlinear transport behaviors in this regime,
do not explain the origin of the peak effect itself.

As shown in Fig. 1~b! of Ref. 14, in the ‘‘peak regime’’
the I -V characteristics of the superconductor vary en
mously. First, on increasingH, the critical currentI c in-
creases. This is the ‘‘peak effect.’’ Second, below so
threshold magnetic field, theI -V curves always rise concav
upward fromI c . This is the generic form of theI -V for an
FLL that is usually reported in the literature, and it is ass
ciated with an ‘‘elastic’’ regime. Third, when the extern
magnetic field enters the ‘‘peak regime,’’ theI -V curves
change drastically, starting as concave upwards but t
bending over after a pronounced inflection point associa
with a change of curvature, resulting in a characteris
S-shapeI -V curve. Close to onsetI c , it is concave upward,
but then bends over asI increases further, saturating to
finite slope at large currents. There is also a special, critic
shaped curve in the midst of the peak regime which is alw
convex for I .I c . This appears at approximately 5.8 T
experiments where the inflection point has moved to on
Finally, above about 6.2 T, the inflection point is at curren
larger than those used in the experiments, and there is
saturation in the slope of theI -V curves that can be observe
Starting with the critically shaped curve, the numerical sim
lations presented here reproduce the entire progressio
these curves in the plastic regime and their changes a
parameter in the model, representing vortex interactions,
varied. It does not reproduce the behavior in the ‘‘elast
regime, as explained later. The elastic regime is also
observed in two-dimensional MD simulations of driven vo
tices near the onset of flow.

Experimental measurements of the differential resista
R5dV/dI reveal a peak inR, corresponding to the inflection
point for the S-shapedI -V curves. As the external magnet
field is increased in the peak regime, the position of the p
first shifts to lower currents, and its magnitude grows. T
continues until the position of the peak corresponds toI c . At
7-2
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SIMPLE MODEL FOR PLASTIC DYNAMICS OF A . . . PHYSICAL REVIEW B64 224517
this point the peak has its maximum amplitude and theI -V
curve is critically shaped. At higher external magnetic fiel
the magnitude of this peak diminishes, and its position
shifts to higher currents. Except for the largest magne
fields used, the differential resistance eventually saturate
constant values at large enough currents, indicating Ohm
fluidlike behavior for sufficiently high driving. Also, excep
for the critically shaped curve the usual scaling ansatz a
ciated with dynamic critical phenomena,V;(I 2I c)

b, does
not appear to hold for the S-shapedI -V curves. The numeri-
cal simulations presented here reproduce this precise pa
of behavior for the differential resistance in the ‘‘peak’’ r
gime, including the changing position~to higher currents!
and decreasing magnitude of the peak resistance as v
interactions weaken and the saturation to Ohmic or fluidl
behavior at high currents.

Over a narrow range of parameters in the peak regi
Bhattacharya and Higgins observed jaggedness in the di
ential resistance. This corresponds to secondary peaks in
dition to the main peak in the differential resistance. As
external magnetic field is varied, the peaks can be mad
appear and disappear, but for a given value of magnetic fi
and for a given sample, the peaks are reproducible and
act as ‘‘fingerprints’’ of the underlying pinning disorder. Ou
model also exhibits suchI -V fingerprints.

III. MODEL

A. Motivation

In order to describe the collective transport of superc
ducting flux, we consider a coarse-grained model where
details of the precise interactions between flux lines~or vor-
tices! are lost but the general effects of repulsive interact
between granular or discrete objects, pinning, and ov
damped motion leading to stick-slip dynamics~tearing! are
preserved.

The BP model is an interacting sandpile model of vortic
in a type-II superconductor, where the ‘‘sand’’ grains, rep
senting magnetic vortices, repel each other. It was origin
motivated by the observation of~possibly! self-organized
critical17 avalanches in field ramping experiments,12 where
the distribution of flux packages falling into the interior co
of a hollow cylindrical superconductor were measured. A
tually, the similarity between the Bean state18 ~or vortex pile!
and sandpiles was first pointed out by de Gennes.19 Later,
Vinokur, Feigel’man, and Geshkenbein20 suggested that ther
mally induced flux creep would lead to a self-organized cr
cal state in a type-II superconductor, as did Tang.21 The key
observation is that flux-line flow always takes place on a fl
pile which has an overall density gradient. This pile may
in a self-organized critical or some other nontrivial state.

In addition to describing vortex avalanches in field ram
ing experiments,12 the BP vortex model has also been used
describe flux noise,22 vortex avalanches in the presence o
periodic, dense array of pinning centers,23 thermally acti-
vated flux creep,24,25 and magnetization loops.26
22451
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Coarse-graining

The BP model4 results from a coarse-grained descripti
to the scale of the London lengthl of the microscopic dy-
namics and incorporates the features that are essential to
duce the observed complex behavior: repulsive interacti
between vortices, variations in the pinning potential, a
variations in the vortex density—all at the scale ofl. Con-
sider a transverse two-dimensional slice of a supercond
ing slab atT50 and imagine imposing a grid of cells on th
system. Vortices in the model correspond to a vortex num
in an extended region of the actual physical system. Pinn
in the model corresponds to a number of point pins in
extended cell. Each lattice site in the model can hold ma
vortices and can have a different, albeit quenched, pinn
potential, due to the underlying randomness in the positi
and strengths of the microscopic pinning centers. The mo
allows many vortices to interact with each other while ma
tain locality ~at the scale ofl) in interactions. It is the only
model of this sort that has been proposed to describe
dynamics in superconductors. It enables numerically stud
using ordinary workstations, of the steady-state and trans
properties of systems larger than (500l)2 containing tens of
106 of vortices.

B. Definition

The BP model is defined as follows~see Fig. 1!. Consider
a two-dimensional honeycomb lattice27 where each cellx has
three nearest neighbors and is occupied by an integer num
of vortices,m(x). The total energy of the vortex system in
cludes the repulsive pairwise interaction between the vort
and the attractive interaction of vortices with the pinni
potential V̂. For a given configuration of vortex numbe
$m(x)%, the total energy of the system is

FIG. 1. The two-dimensional honeycomb lattice. Each cellx has
three nearest neighbors and is occupied by an integer numbe
vortices,m(x). The force pushing a vortex from cellx to cell y is
calculated by taking the discrete gradient of the sum of two pot
tials, one representing the repulsive interaction between vort
occupying the same and nearest-neighbor cells and the other r
senting the attractive interaction between vortices and pinning c
ters.
7-3
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H„$m~x!%…5(
i , j

Ji j m~ i !m~ j !2(
i

V̂pin~ i !m~ i !. ~1!

Since the model describes a system coarse grained to
scale of the London length, the repulsive interactionsJi j are
short ranged. This usually includes an on-site interaction
a weaker nearest-neighbor interaction.

As in the microscopic case described by MD simulatio
the change in the total energy of the model when movin
unit vortex from one site to a nearest-neighbor site is de
mined. This yields the force to move a unit vortex fromx to
y, which is

Fx→y5Vpin~y!2Vpin~x!1@m~x!2m~y!21#

1r @m~x1!1m~x2!2m~y1!2m~y2!#. ~2!

As indicated in Fig. 1, the nearest-neighbor cells ofx arey,
x1, andx2 and the nearest-neighbors cells ofy arex, y1, and
y2 and 0<r ,1. A slightly different implementation of the
disorder is used than before. The normalized pinning po
tial Vpin(x) is a random number taken from a uniform dist
bution in the interval between zero andVmax. In each time
step, all cells of the lattice are updated in parallel. A sin
vortex moves from a cell to a neighboring cell if the force
that direction is positive or, equivalently, if the total ener
of the system is lowered. In Eq.~2!, the units of force on a
vortex have been normalized so that the on-site term is u
Thus there are two dimensionless parameters remain
Vmax and r.

Many alternatives exist to handle the situation when m
than one unstable direction appears for a vortex to move
the previous implementation of the model, one unstable
rection was chosen at random. In order to simplify the mo
and eliminate all potentially spurious sources of noise,
most unstable direction that has the largest force is cho
and the vortex moves to that site. This represents an extre
process. In fact the entire model is now completely determ
istic, corresponding to aT50 limit of the dynamics.

C. External magnetic field: Building a vortex pile

Flux lines enter the superconductor from the edg
pushed in by the external magnetic field. This is represen
by putting all sites on the left edge of the model in cont
with a reservoir of vortices at some potential, correspond
to the external magnetic field on the left side of the samp
The same is done for the right side of the sample. For s
plicity, periodic boundary conditions are used for the top a
bottom. If the two reservoirs are set equal, representing
bedding the sample in an external magnetic field, vorti
enter the system generating the classic V-shaped flux de
curve as the external magnetic field is increased~see below!.

1. Details of the boundary algorithm

In order to calculate the force on a vortex to move to
from a boundary site, a special algorithm must be used
cause one of the nearest-neighbor sites of each boundar
is not on the lattice. The rule used here simply assumes
the ‘‘virtual’’ off-lattice site neighboring each boundary si
22451
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is occupied with an equal number of vortices as that bou
ary site. More specifically, at the beginning of each latt
update, all of the sites on the boundary are set to be occu
with the same number of vortices. The lattice update th
proceeds, during which vortices can move off the bound
sites into the system or from the system onto the bound
sites, thereby changing the number of vortices occupyin
boundary site. However, at the beginning of the next latt
update all of the sites on the boundary are reset to t
original value. Through this process, vortices can be
moved or added to the system. In general, the left and r
boundaries are held at different values. There is no pinnin
the boundary sites.

2. Details of the parallel update

An artifact of parallel updating is the existence of loc
instabilities in which two, or more, vortices oscillate ba
and forth between neighboring sites. These local instabili
disappear if the model is coarse grained, because then
neighboring sites are incorporated into a single one a
therefore, are not important to the large-scale behavior of
system. The instabilities can be eliminated by keeping tr
of the direction from which the last vortex moved onto ea
site and always forbidding a return movement backwards
that direction. Otherwise, backward jumps are rare and th
fore disallowing them does not change the large-scale be
ior of the system. A similar rule applies to the boundary sit
The advantage of the parallel update is that it is numeric
more efficient than other update schemes and does not in
duce any uncontrollable spurious effects.

D. Transport current: Shifting the boundary conditions

We consider an infinite slab of finite thickness in a par
lel applied magnetic field, carrying a current perpendicula
the field. Depending on the direction of the applied curre
the magnetic field on one side of the superconductor~e.g.,
the right-hand side! will be decreased and the magnetic fie
on the other side will be increased~e.g., the left-hand side!.
Assuming the applied magnetic field is sufficiently stron
this corresponds just to changing the heights of the magn
flux pile on the left and right edges or a general kind of ‘‘tilt
of the pile. See, for example, Ref. 28. Of course, the inter
currents and forces inside the superconductor will readjus
accommodate this new boundary condition. The flux lin
are considered to be perfectly stiff and described by a tw
dimensional slice of the three-dimensional slab.

An applied magnetic field in the geometry describ
above will produce the well known ‘‘V profile’’ of the mag
netic flux density discussed, for example, in Orlando a
Delin29 and observed in many experiments, such as thos
Behniaet al.30 This is shown in Fig. 2. The actual magnet
profile depends on the history of the sample and how
magnetic field has been applied in the past. Applying a fin
current shifts the boundary conditions, resulting in a hys
etic profile, also shown in Fig. 2. Note the overlap in t
profiles in Fig. 2 on the portion where the slope is positiv
The profiles are exactly the same in this region as the app
current has caused no flux motion in this part of the syste
7-4
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Onset

Eventually, as the applied current is increased furthe
critical current is reached, where the shift of the bound
conditions is so large that steady vortex flow occurs do
the gradient spannning the entire sample. A profile just ab
the critical current is also shown in Fig. 2. Note that th
profile also retains some hysteretic properties. For exam
it has a bump corresponding to where the increasing
decreasing portions of the magnetic field profile merged
the external current was increased above the threshold.
bump disappears if the boundary conditions on the sam
are shifted further and then lowered back to the previ
value.

E. Making I -V measurements

The I -V characteristic is determined by the relation b
tween applied current and the vortex flow, which induce
voltage. To our knowledge, this type of numerical measu
ment, made by shifting the boundary conditions on the B
state, has not been investigated before. Here theI -V charac-
teristic is simply the relation between the magnitude of
shift ~representing an applied current! and the average flow
rate of vortices~representing a voltage! when the critical
current~tilt ! is exceeded. In order not to confuse the rea
we use the term current to refer to the applied electr
transport current and the term flow to refer to the motion
magnetic vortices.

In general, the boundary sites in the model can be se
any real value, including noninteger values. This is beca
vortex number on the boundary sites describes the exte

FIG. 2. Magnetic field profile as a function of distance from t
center of a superconducting slab in the direction perpendicula
both the external magnetic field and applied current. Horizon
units are lattice sites from the center of the system, and ver
units are the number of vortices per lattice site. TheV-shaped long-
dashed line is the stable profile when an external field is appl
but no applied currentI. The short-dashed and dotted lines are
stable hysteretic profiles resulting from increasing applied curr
The solid line~the steep straight line! is the profile just above the
onset of vortex motion.
22451
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magnetic field density at the boundary of the sample. Ho
ever, only integer units of magnetic flux can enter the inter
of the system, and thus only integer numbers of vortic
occupy interior lattice sites. Obviously, the magnitude of t
difference between the heights of the left and right bou
aries can also be set to noninteger values. However, if
boundary heights are shifted by less than whole integ
steps can appear in theI -V data. These steps are caused
the fact that only whole numbers of vortices can occu
interior lattice sites. Since one vortex unit in the model re
resents many actual physical vortices, this is to some ex
an unphysical artifact of the model and the discreteness
fect should be less apparent in experiments. To eliminate
effect, all of theI -V data presented in this paper were calc
lated by shifting the boundary heights by only integer nu
bers of vortices.

In simulations of the model, there is almost no backwa
movement of vortices. Thus, the vortex flow can be det
mined by measuring the average number of vortices mov
per lattice update~the average activity!. Furthermore, the ve-
locity of each moving vortex is one lattice site per upda
Thus, the experimentally measured voltage, which is equa
the amount of moving flux times the velocity of that flux,
therefore proportional to the average vortex activity.

Current-voltage (I -V) data from simulations of differen
size systems collapse nicely in a scaling plot, Fig. 3, if t
voltage is measured as vortices moving per lattice update
lattice site~the average activity per site! and the current is
measured as the average slope across the system~the mag-
nitude of the height difference between the left and rig
boundaries divided by the length of the system!. In the fol-
lowing sections,I -V data are presented in these scaling un
In Fig. 3, theI -V data were produced by repeatedly increa
ing the height of the left boundary by one vortex and low
ing the height right boundary by one vortex. The vortex
teraction strength wasr 50.1.

The I -V data presented in the following sections we
calculated in a similar fashion. All of the data are for syste
of size 2003400. EachI -V data point was calculated by firs

to
l

al

d,

t.

FIG. 3. Finite-size scaling plot ofI -V measurements from simu
lations of the cellular model. System sizes are shown in the leg
7-5
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shifting the left boundary height up one vortex and shifti
the right boundary height down one vortex. As for Fig. 3, t
lattice was updated 20 000 times to eliminate transient
havior, and finally the lattice was updated another 20 0
times during which the average vortex activity was me
sured.

IV. SIMULATION RESULTS: COLLECTIVE TRANSPORT
BEHAVIOR OF THE MODEL

The I -V relation was measured for different values of t
parameters and for different system sizes. Our main resu
shown in Fig. 4, where the parameterVmax55 and the pa-
rameterr is varied. The parameterr represents the strengt
of repulsion between vortices at nearest-neighbor cells~of
sizel).

The first result is that asr decreases, the critical curren
which is the slope of the pile where vortices first start
flow, increases. Clearly, applying an increasedr to the pile in
the steady state lowers the slope of the pile since form
stable local slopes will now become unstable due to the
creased repulsion between vortices at neighboring s
Thus, fixing all other parameters, we can identify the para
eterr in the model as a way of controlling the critical curre
or slope of the pile. In the superconductor, the critical curr
can be controlled by the applied magnetic field. In the pe
effect regime, it turns out that increasing the applied m
netic field leads to a softer FLL and thus a higher critic
current. Therefore, the regime where the critical current is
increasing function of the applied magnetic field is rep
sented in our model by a critical current which is a decre
ing function of the parameterr.

The second result is that, except for the largestr, all of the
I -V curves have a characteristic S shape. They start ou
someI c increasing concave upward and then bend over s
rating to a finite slope at large currents. TheI -V relations for
a given realization of disorder, however, do not overlap
high currents, unlike the results obtained with previous M

FIG. 4. I -V measurements from numerical simulations for fo
different values of the vortex interaction strengthr.
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simulations.31 Again, all of this agrees with the experiment
results.

In Fig. 5, the differential resistancedV/dI is calculated by
taking numerical derivatives of the curves shown in Fig.
At the largestr value, the resistance peak is very large.
the parameterr decreases, the peak moves to higher curre
and decreases in magnitude. In fact the same behavio
observed in experiments as the external magnetic field
proachesHc2. As mentioned before, the MD simulation
give the opposite result of a peak that increases in magni
as it shifts to higher currents.31

In the actual experiments, at fields below the peak eff
regime, the vortex flow is believed to be elastic and there
no observed peak in the differential resistance. As the m
netic field increases a peak in the differential resistance s
to develop, which then reaches a maximum, decreasing a
for larger fields. Our simulations appear to describe the
periments once the peak in differential resistance has rea
its maximum.

In order to obtain an elastic regime, we could conside
three-dimensional coarse-grained model of repelling fl
lines rather than point vortices representing a tw
dimensional cross section of that system. Work is in progr
along those lines.

The model discussed here does not describe the beha
of the superconductor in fields greater than that which gi
the largest critical current, where the critical current d
creases as the magnetic field increases. This may be du
the fact that we take the depairing current to be strictly in
nite ~i.e., j c / j 050) and there is no transition to a nonsupe
conducting state in the model presented here.

Note that the differential resistance curves for smallr con-
tain secondary peaks, in addition to the main peak. Thi
similar to the jaggedness or ‘‘fingerprint’’ found in exper
ments. This jaggedness in our results occurs in the filam
tary channel regime, discussed below, and is due to filam
opening and closing as the applied current increases.

FIG. 5. Differential resistance measurements from numer
simulations. These results are calculated by numerical differen
tion of the I -V results shown in Fig. 4.
7-6
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A. Relation to river morphology

So far we have only characterized the model using m
surements analogous to those that experimentalists typic
have available. However, numerical simulations can a
provide a great deal of easily accessible information ab
the morphologies of flow patterns associated with differ
configurations. In fact, different morphologies of vortex flo
patterns have been observed using MD simulations.8–10,32–35

To understand the nature of the differences in the shap
the I -V curves, we have examined how the flow morpho
gies change as one increases the applied current for a sy
that has an S-shapedI -V curve and also for the singularI -V
curve that occurs at larger.

The paths that the vortices take as they cross the sam
can be determined by measuring the average activity at e
site. For example, Fig. 6 shows a series of gray scale ima
of the vortex flow patterns. These images represent ‘‘tim
lapsed photographs’’ of the vortex activity. The different im
ages in Fig. 6 show the vortex flow patterns for the casr
50.1 as a function of increasing external currentI. In these
images, sites with no vortex activity are blank, sites with
activity greater than or equal to 0.5~one vortex moves every
other lattice update! are black, and sites with activity be
tween 0 and 0.5 are indicated by gray dots with a darkn

FIG. 6. Vortex flow patterns at different values of the extern
transport current for a vortex interaction strength ofr 50.1 with a
corresponding S-shapedI -V curve. The current in each case~mea-
sured as the slope of the system! is ~a! 0.21,~b! 0.225,~c! 0.25,~d!
0.30, ~e! 0.375, and~f! 0.45.
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proportional to their activity. These patterns are fixed and
not change in time with fixed external driving conditions.

The nature of the flow can be quantified by the distrib
tion of activity at the different lattice sites. Figure 7 show
histograms of the activity corresponding to the images
Fig. 6. These histograms are constructed with 1000 bins
normalized so that the area under the curve is equal t
Note that there are peaks corresponding to zero activity
included in the figure. Those peaks at zero activity decre
in size as the current is increased.

As can be seen in Figs. 4 and 5, theI -V curve for r
50.1 is S shaped. Figure 6~a! shows the vortex flow pattern
just above threshold for that case. The vortex flow tak
place only on a single filamentary string with some sm
side branches. This behavior is also evident in the histog
Fig. 7~a!, which shows a small number of isolated peaks.
the tilt of the pile increases the number of filaments of t
vortex flow increases, and they begin to merge. This proc
can be seen in Figs. 6~b! and 6~c!. The corresponding histo
grams of activity shown in Figs. 7~b! and 7~c! indicate an
increasing number of peaks and the development of a c
tinuous distribution.During this merging process, while th
vortex flow remains filamentary, the I-V curve remains con-
cave upward, and the differential resistance rises.

Eventually the filaments of vortex flow merge to form
braided river, as shown in Fig. 6~d!. This occurs around the
peak in differential resistance, corresponding to a chang
curvature of theI -V relation. In this case, the correspondin
histogram of activity@Fig. 7~d!# shows a continuous distri
bution of activity peaked at zero.Thus the peak in differen
tial resistance signals a change in the underlying vortex fl
morphology from filamentary strings to a braided river.This
appears to be consistent with the observation of Koltonet al.
that at the peak in differential resistance ‘‘all the vortices a
moving in a seemingly isotropic channel network with ma
mum interconnectivity.’’36

l

FIG. 7. Histograms of the site activity corresponding to the v
tex flow patterns shown in Fig. 6. Not visible in the figures are
peaks at zero activity. The size of those peaks are~a! 993, ~b! 920,
~c! 735, ~d! 95, ~e! 14, and~f! 7.6.
7-7
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As the tilt of the pile is increased even further, the vort
flow becomes spatially more and more uniform, as
braided river floods. This uniform flow region corresponds
linear or Ohmic behavior. These results can be seen in
river flow pictures in Figs. 6~e! and 6~f!. The corresponding
histograms shows a peaked continuous distribution, wh
has separated from zero activity. As the tilt increases furt
the continuous distribution of activity obtains an increas
mean and narrowing width.The transition to Ohmic behav
ior comes about as the braided river floods at higher fl
rates than can be supported by such a structure.

A similar progression of flow morphologies, from isolate
filamentary channels, to a braided river, to a flooded ri
with uniform flow, occurs for other values ofr with S-shaped
I -V curves. However, a different scenario occurs at la
values ofr where theI -V curve is not S shaped, but is in
stead always concave downward from the onset of vo
motion. TheI -V curve forr 50.4 in Fig. 8 is an example. We
will refer to this as the critical curve; its functional form
discussed in the next subsection. The differential resista
for the critical curve is discontinuous, as can be seen in
5.

For the critical curve, there is no filamentary region
vortex flow. Instead, right at the onset of vortex motion, t
flow has the structure of a braided river.This can be seen in
Fig. 8~a!, and in the corresponding activity histogram in F
9~a!, which shows a continuous distribution of activity.~Fig-
ures 8 and 9 were produced in the same manner as Fig
and 7, respectively.! As the tilt of the pile is increased eve
further, the flow again increases and becomes more spat
uniform, similar to behavior of the S-shapedI -V case after
the peak in the differential resistance, where the braided r
floods. This behavior can be seen in the river flow picture
Figs. 8~b!, 8~c!, and 8~d! and the corresponding histogram
in Figs. 9~b!, 9~c!, and 9~d!. Since the critical curve has

FIG. 8. Vortex flow patterns at different values of the extern
transport current for a vortex interaction strength ofr 50.4 with a
corresponding criticalI -V curve. The current in each case~mea-
sured as the slope of the system! is ~a! 0.10,~b! 0.15,~c! 0.20, and
~d! 0.40.
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diverging differential resistance at onset, this further suppo
our observation that the peak in the differential resistanc
associated with a braided river structure.

B. Scaling of the critical I -V curve

The critical I -V curve for r 50.4 is well described by

V;~ I 2I c!
b,

with b50.660.1, as shown in Fig. 10. For that measur
ment, the critical currentI c was measured to be 0.095, whic
was the largest current found with zero voltage. Since
current was sampled at values spaced by 0.005, the un
tainty in I c is approximately60.005. Varying the value ofI c
over that range changes the value ofb that best fits the data
near the onset of vortex motion and allows an estimate of
error in b.

The exponentb can be related via scaling arguments
the exponents characterizing the distribution of avalanche
the self-organized critical state. In the self-organized criti

l

FIG. 9. Histograms of the site activity corresponding to the v
tex flow patterns shown in Fig. 8. Not visible in the figures are
peaks at zero activity. The size of those peaks are~a! 15.7,~b! 5.6,
~c! 4.4, and~d! 3.3.

FIG. 10. Double-logarithmic plot of voltage vs current minu
critical current forr 50.4. The straight line shown has a slope
0.615.
7-8



r
nt

e
ti-

be
. I

dl
lo

in

du
e

s

sy
th
it
n

al

a-
g

nt
in
p

er

te

a

s

th

no

pe-
vel
rcle,
m.
ux
ical
to

ys-
ent
ned.
f

igh
n
at-
lly
to

er-
ws
hifts

in

ter-
m
al

use
s of

ux
ro-
ris-

res
’’
an
de
lso
ar

rnal
ith

two
LL

ans-
a
ex-

b-
gree
ne
ul-

s of
om
n a

SIMPLE MODEL FOR PLASTIC DYNAMICS OF A . . . PHYSICAL REVIEW B64 224517
state, the average flow rateV of vortices is controlled rathe
than the overall slope of the system. The scaling argume
similar to that used in Corral and Paczuski37 to describe the
transition from avalanche to continuous flow in the on
dimensional Oslo model.37 The excess slope above the cri
cal slope at onset isDm5I 2I c5(DN)L3, whereDN is the
excess number of vortices in the system andL is the system
size. If vortices are added very slowly, then there will
distinct avalanches separated by intervals of no activity
that regime, superposition applies andDN;VLz, whereLz is
the cutoff in the duration of the avalanches. In the rapi
driven regime, the avalanches overlap and the excess s
becomes independent of system size; thusDm;V1/b. These
two limits can be combined into a single crossover scal
function

DN;Laf ~VLx!. ~3!

The exponentx in this expression measures the average
ration of avalancheŝt&;Lx. Since avalanches in this cas
come about from adding an entire row ofL vortices to the
system, the average size of avalanches, measured in term
the number of topplings iŝs&;L2, rather than̂ s&;L, as in
the Oslo model. Obviously, on average each site in the
tem topples once when a row of vortices is added in
self-organized critical state. Using this result together w
conservation of probability gives a scaling relation betweex
andz:

x5z122D.

Combining all these results gives

b5
x

x122z
5

z122D

42D
.

Using the exponent valuesz51.5 andD52.7 obtained in
Ref. 4 givesb50.6, in good agreement with the numeric
result presented in Fig. 10.

C. Comparison with MD simulation results

Nori and collaborators first studied, using MD simul
tions, flux driven into superconductors with random pinnin
with the driving force solely due to the flux density gradie
They elucidated many properties of the Bean state includ
the magnetic field profile, magnetization hysteresis loo
critical currents, vortex avalanches, and vortex rivers.5–10

None of these studies using an open system with an ov
density gradient reported theI -V characteristics, though.

Recently, Olsenet al.31 have simulated theI -V curve as
the FLL softens by varying the vortex interaction parame
~see also Ref. 34!. As in all previous MD studies of IV be-
havior of the FLL,31–33,36,38–40the vortices are contained in
periodic system, where they can neither enter nor leave.The
initial condition is an ordered vortex lattice. Motion take
place via MD updates with auniform forceapplied to all
vortices.

The most important difference, besides the scale of
model, with our description of theI -V experiments is that, in
all of these MD studies of the current-voltage relation,
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overall vortex density gradient can develop owing to the
riodic boundary conditions. This makes the vortices tra
perpetually around the system and forces the paths to ci
which is unphysical and does not occur in the real syste
The actual physical situation is an open system with fl
pushed in and out, rather than a periodic one. The phys
system adjusts its overall magnetic flux profile in response
applied forces. This is not possible in a periodic, closed s
tem. Nevertheless, the basic result that the critical curr
increases as the vortex interactions weakens is obtai
However, all theI -V curves measured via MD simulations o
periodic systems fall on top of each other, or overlap, at h
currents, for different values of the vortex interactio
strength. This is inconsistent with the experiments of Bh
tacharya and Higgins and reflects the fact that the artificia
periodic system is not able to adjust its profile in response
applied forces. An even more significant, but related, diff
ence is that the peak in the differential resistance gro
monotonically and gets sharper as the resistance peak s
to higher currents, the exact opposite of what happens
experiments.

V. SUMMARY

We have studied the nonlinear current-voltage charac
istics of flux flow in type-II supeconductors with rando
pinning using a simple, cellular model. As in the physic
system, vortices flow down a flux density gradient. Beca
the coarse-grained model does not include any degree
freedom at scales much smaller than the London lengthl, it
cannot describe structural ordering or disordering of the fl
line lattice. Despite this fact, simulations of the model rep
duce many of the empirically observed transport characte
tics of plastic flux flow in type-II superconductors.

In particular, our results reproduce many of the featu
attributable to plastic flow of the FLL in the ‘‘peak regime.
By weakening the vortex interaction strength, we find
increase of the critical current and a falling of the magnitu
of the peak in the differential resistance. The model a
exhibits I -V fingerprints and crossover to Ohmic or line
behavior at high currents. Also, theI -V curves for different
vortex interaction strengths do not merge at large exte
currents. All of these features are completely consistent w
experimental results. However, presumably due to the
dimensionality of the model, the elastic behavior of the F
is not reproduced.

The success of these efforts to describe the plastic tr
port behavior of magnetic flux in superconductors with
coarse-grained cellular model suggests a possibly generic
planation for and ubiquity of plastic flow phenomena o
served in superconductors. It may not depend on the de
of disorder or defects in an underlying microscopic flux-li
lattice. Instead the behavior may be common to driven rep
sive particle systems in a disordered media. The varietie
plastic flow behaviors in the model studied here result fr
the changing morphologies of the vortex flow pattern dow
7-9
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vortex density gradient, self-organizing into distinct larg
scale patterns. These include isolated filaments, which m
at higher flow rates to give a braided river and lead to u
form flow or Ohmic behavior at the highest flow rates. T
filamentary structure is associated with a concaveI -V char-
acteristic, the braided river structure is associated with
peak in the differential resistance, and the change to Oh
behavior comes about as the braided river floods as it ca
support a higher level of flow.
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