Symmetry breaking in escaping ants

and other experiments in self organization

E. Altshuler

In collaboration with J. Fernández Y. Núñez O. Ramos C. Noda

"Henri Poincaré" Group of Complex Systems University of Havana

Helbing, Farkas & Vicsek, Nature 407, 487 (2000)

Self-propelled particles: Modeling emergent features of "escape panic"

 $\frac{v_{i}^{0}(t)\vec{e}_{i}^{0}(t)-\vec{v}_{i}(t)}{\tau_{i}}+\sum_{j(\neq i)}\vec{f}_{ij}+\sum_{w}\vec{f}_{iw}$

Individual movement (includes the desire to "follow the crowd")

Person-person interaction (may include repulsion, tangential interaction, etc.) Tangential friction, etc.)

Wall-person interaction (may include repulsion,

"People" escaping under panic: Emergence of symmetry breaking as a theoretical prediction

Our proposal: using ants as model pedestrians

Atta insularis: BIBIJAGUA

Ants in moderate panic:

Statistics for several experiments: 12 ± 3 % difference

Ants in panic: how to produce panic?

Ants in panic: Using a repellent fluid

Statistics for several experiments: 51 ± 7 % difference

Ants in moderate panic: A simulation inspired in Helbin *et al.*'s

Cell shape: circular

Initial conditions:

1) Ants size distribution: Gaussian

2) Ants positions into the cell: random

3) Ants initial velocities: Gaussian distribution of speeds, random directions

Rules:

1) Ant-wall interaction: simple reflection

2) Ant-ant interaction: just delays the will to follow a given direction

3) Ant escape: ant within a distance $D < R_e$ from exit

Simulations vs. experiments: moderate panic

Statistics for several experiments: 12 ± 3 % difference Statistics on 300 simulations 10.4 ± 0.09 %

Ants in high panic: A simulation inspired in Helbin *et al.*'s

NEW Rules:

1) Ant-poison interaction: If direction points to poison area, it changes at random

2) Ant direction: given by ^a

$$\vec{e}_{k} = Norm \left[(1 - p)\vec{e}_{k-1} + p \left\langle \vec{e}_{k-1}^{herdspeed} \right\rangle \right]$$

where p is a panic parameter, and $\vec{e}_{k-1}^{herdspeed}$

has been calculated within R_{herd}

R_{herd}

 \vec{e}_{i}

Example for $p \rightarrow 1$

R_{herd}

^a Vicsek et al. PRL 75: 1226 (1995)

Simulations & experiments: ants in panic

Statistics for several experiments: 51 ± 7 % difference Statistics on 300 simulations: 50 ± 4 %

Ants in high panic: A simulation less inspired in Helbin *et al.*'s

Modifying the herding rule:

Ant direction: given by

$$\vec{e}_{k} = Norm \left[\left(1 - p \right) \vec{e}_{k-1} + p \vec{e}_{k-1}^{herdCM} \right]$$

where p is a panic parameter, and \vec{e}_{k-1}^{herdCM} has been calculated within R_{herd}

RESULTS

Statistics for several experiments: 51 ± 7 % difference Statistics on 300 simulations, same parameters as Helbing's inspired model: 49.5 ± 3 %

Authors in panic: The effect of Biological Reviewers

A few conclusions

We have demonstrated in a real experiment the possibility of the emergence of symmetry breaking when ants escape from a room under panic.

The phenomenon can be modelled in a simple fashion, if appropriate "herd-following rules" are applied.

If Helbing *et al.*'s model really applies to humans, we are forced to conclude that, at least partially, people can behave like ants in a situation of escape induced by panic!

Symmetry breaking in escaping ants and other experiments in self organization

"Henri Poincaré" Group of Complex Systems University of Havana

One experimental idea

Available models (to start from)

Around limits of the daily cycle: How the colony "wakes up"and "goes to bed"?

time

CA simulations

Solé et al. J. Theor. Biol. (1993) 161, 343-357

Panic1 (MD-like): Helbing et al. Nature 407:487 (2000)

Panic 2 (CA): Saloma et al. PNAS 100: 11947 (2003)

Panic 3 (CA-like): Altshuler et al. Am. Nat. ?? (2005)

Sospedra, Noda & Altshuler...somewhere...sometime

Contamination Dynamical Networks

Available models (to start from)

Dynamics during "work hours"

Pheromone trails:

http://www.melotti.com/EngHome/Computing /AntsSim/AntBoxSimulator.pdf

Panic simulations

Contamination dynamical network

Door detection radius

Contamination radius

Contamination dynamical network

Door detection radius

Contamination radius

Further experimental ideas

Further experimental ideas

Measuring correlations

$$C_{ab}(t') = k \frac{\langle A_a(t)A_b(t+t') \rangle - \langle A_a(t) \rangle \langle A_b(t) \rangle}{\sqrt{\sum [A_a(t) - \langle A_b(t) \rangle]^2 \sum [A_a(t) - \langle A_b(t) \rangle]^2}}$$

But how such biologist's dream would come true?

